enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Master theorem (analysis of algorithms) - Wikipedia

    en.wikipedia.org/wiki/Master_theorem_(analysis...

    The master theorem always yields asymptotically tight bounds to recurrences from divide and conquer algorithms that partition an input into smaller subproblems of equal sizes, solve the subproblems recursively, and then combine the subproblem solutions to give a solution to the original problem. The time for such an algorithm can be expressed ...

  3. Ramanujan's master theorem - Wikipedia

    en.wikipedia.org/wiki/Ramanujan's_master_theorem

    In mathematics, Ramanujan's master theorem, named after Srinivasa Ramanujan, [1] is a technique that provides an analytic expression for the Mellin transform of an analytic function. Page from Ramanujan's notebook stating his Master theorem. The result is stated as follows:

  4. Master theorem - Wikipedia

    en.wikipedia.org/wiki/Master_theorem

    Some theorems called master theorems in their fields include: Master theorem (analysis of algorithms), analyzing the asymptotic behavior of divide-and-conquer algorithms; Ramanujan's master theorem, providing an analytic expression for the Mellin transform of an analytic function; MacMahon master theorem (MMT), in enumerative combinatorics and ...

  5. List of theorems - Wikipedia

    en.wikipedia.org/wiki/List_of_theorems

    Mason–Stothers theorem (polynomials) Master theorem (analysis of algorithms) (recurrence relations, asymptotic analysis) Maschke's theorem (group representations) Matiyasevich's theorem (mathematical logic) Max flow min cut theorem (graph theory) Max Noether's theorem (algebraic geometry) Maximal ergodic theorem (ergodic theory)

  6. Karatsuba algorithm - Wikipedia

    en.wikipedia.org/wiki/Karatsuba_algorithm

    For this recurrence relation, the master theorem for divide-and-conquer recurrences gives the asymptotic bound () = (⁡). It follows that, for sufficiently large n , Karatsuba's algorithm will perform fewer shifts and single-digit additions than longhand multiplication, even though its basic step uses more additions and shifts than the ...

  7. Finite subdivision rule - Wikipedia

    en.wikipedia.org/wiki/Finite_subdivision_rule

    This is an example of a subdivision rule arising from a finite universe (i.e. a closed 3-manifold). In mathematics, a finite subdivision rule is a recursive way of dividing a polygon or other two-dimensional shape into smaller and smaller pieces. Subdivision rules in a sense are generalizations of regular geometric fractals.

  8. MacMahon's master theorem - Wikipedia

    en.wikipedia.org/wiki/MacMahon's_Master_theorem

    In mathematics, MacMahon's master theorem (MMT) is a result in enumerative combinatorics and linear algebra. It was discovered by Percy MacMahon and proved in his monograph Combinatory analysis (1916).

  9. Divided differences - Wikipedia

    en.wikipedia.org/wiki/Divided_differences

    In mathematics, divided differences is an algorithm, historically used for computing tables of logarithms and trigonometric functions. [citation needed] Charles Babbage's difference engine, an early mechanical calculator, was designed to use this algorithm in its operation. [1] Divided differences is a recursive division process.