enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Adjacency_list

    An adjacency list representation for a graph associates each vertex in the graph with the collection of its neighbouring vertices or edges. There are many variations of this basic idea, differing in the details of how they implement the association between vertices and collections, in how they implement the collections, in whether they include both vertices and edges or only vertices as first ...

  3. Depth-first search - Wikipedia

    en.wikipedia.org/wiki/Depth-first_search

    A decision version of the problem (testing whether some vertex u occurs before some vertex v in this order) is P-complete, [12] meaning that it is "a nightmare for parallel processing". [13]: 189 A depth-first search ordering (not necessarily the lexicographic one), can be computed by a randomized parallel algorithm in the complexity class RNC ...

  4. Dijkstra's algorithm - Wikipedia

    en.wikipedia.org/wiki/Dijkstra's_algorithm

    Dijkstra's algorithm (/ ˈ d aɪ k s t r ə z / DYKE-strəz) is an algorithm for finding the shortest paths between nodes in a weighted graph, which may represent, for example, a road network.

  5. Implicit graph - Wikipedia

    en.wikipedia.org/wiki/Implicit_graph

    In the context of efficient representations of graphs, J. H. Muller defined a local structure or adjacency labeling scheme for a graph G in a given family F of graphs to be an assignment of an O(log n)-bit identifier to each vertex of G, together with an algorithm (that may depend on F but is independent of the individual graph G) that takes as input two vertex identifiers and determines ...

  6. Breadth-first search - Wikipedia

    en.wikipedia.org/wiki/Breadth-first_search

    When working with graphs that are too large to store explicitly (or infinite), it is more practical to describe the complexity of breadth-first search in different terms: to find the nodes that are at distance d from the start node (measured in number of edge traversals), BFS takes O(b d + 1) time and memory, where b is the "branching factor ...

  7. Bipartite graph - Wikipedia

    en.wikipedia.org/wiki/Bipartite_graph

    For, the adjacency matrix of a directed graph with n vertices can be any (0,1) matrix of size , which can then be reinterpreted as the adjacency matrix of a bipartite graph with n vertices on each side of its bipartition. [27] In this construction, the bipartite graph is the bipartite double cover of the directed graph.

  8. Talk:Adjacency list - Wikipedia

    en.wikipedia.org/wiki/Talk:Adjacency_list

    The article makes the claim: " Besides the space tradeoff, the different data structures also facilitate different operations. It's easy to find all vertices adjacent to a given vertex in an adjacency list representation; you simply read its adjacency list. With an adjacency matrix you must instead scan over an entire row, taking O(n) time.

  9. A* search algorithm - Wikipedia

    en.wikipedia.org/wiki/A*_search_algorithm

    A* (pronounced "A-star") is a graph traversal and pathfinding algorithm that is used in many fields of computer science due to its completeness, optimality, and optimal efficiency. [1] Given a weighted graph, a source node and a goal node, the algorithm finds the shortest path (with respect to the given weights) from source to goal.