enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Carrying capacity - Wikipedia

    en.wikipedia.org/wiki/Carrying_capacity

    The carrying capacity is defined as the environment's maximal load, [clarification needed] which in population ecology corresponds to the population equilibrium, when the number of deaths in a population equals the number of births (as well as immigration and emigration). Carrying capacity of the environment implies that the resources ...

  3. Ricker model - Wikipedia

    en.wikipedia.org/wiki/Ricker_model

    Bifurcation diagram of the Ricker model with carrying capacity of 1000. The Ricker model, named after Bill Ricker, is a classic discrete population model which gives the expected number N t+1 (or density) of individuals in generation t + 1 as a function of the number of individuals in the previous generation, [1]

  4. Biological exponential growth - Wikipedia

    en.wikipedia.org/wiki/Biological_exponential_growth

    As resources become more limited, the growth rate tapers off, and eventually, once growth rates are at the carrying capacity of the environment, the population size will taper off. [6] This S-shaped curve observed in logistic growth is a more accurate model than exponential growth for observing real-life population growth of organisms. [8]

  5. Logistic function - Wikipedia

    en.wikipedia.org/wiki/Logistic_function

    The standard logistic function is the logistic function with parameters =, =, =, which yields = + = + = / / + /.In practice, due to the nature of the exponential function, it is often sufficient to compute the standard logistic function for over a small range of real numbers, such as a range contained in [−6, +6], as it quickly converges very close to its saturation values of 0 and 1.

  6. Competitive Lotka–Volterra equations - Wikipedia

    en.wikipedia.org/wiki/Competitive_Lotka...

    This model can be generalized to any number of species competing against each other. One can think of the populations and growth rates as vectors, α 's as a matrix.Then the equation for any species i becomes = (=) or, if the carrying capacity is pulled into the interaction matrix (this doesn't actually change the equations, only how the interaction matrix is defined), = (=) where N is the ...

  7. Malthusian growth model - Wikipedia

    en.wikipedia.org/wiki/Malthusian_growth_model

    It is widely regarded in the field of population ecology as the first principle of population dynamics, [6] with Malthus as the founder. The exponential law is therefore also sometimes referred to as the Malthusian Law. [7] By now, it is a widely accepted view to analogize Malthusian growth in Ecology to Newton's First Law of uniform motion in ...

  8. Biocapacity - Wikipedia

    en.wikipedia.org/wiki/Biocapacity

    Since global hectares is able to convert human consumptions like food and water into a measurement, biocapacity can be applied to determine the carrying capacity of the Earth. Likewise, because an economy is tied to various production factors such as natural resources, biocapacity can also be applied to determine human capital. [12]

  9. Population ecology - Wikipedia

    en.wikipedia.org/wiki/Population_ecology

    In a population, carrying capacity is known as the maximum population size of the species that the environment can sustain, which is determined by resources available. In many classic population models, r is represented as the intrinsic growth rate, where K is the carrying capacity, and N0 is the initial population size. [5]