Search results
Results from the WOW.Com Content Network
The atmosphere of Earth is composed of a layer of gas mixture that surrounds the Earth's planetary surface (both lands and oceans), known collectively as air, with variable quantities of suspended aerosols and particulates (which create weather features such as clouds and hazes), all retained by Earth's gravity. The atmosphere serves as a ...
The mathematician Sydney Chapman introduced the term aeronomy to describe the study of the Earth's upper atmosphere [2] in 1946 in a letter to the editor of Nature entitled "Some Thoughts on Nomenclature." [3] The term became official in 1954 when the International Union of Geodesy and Geophysics adopted it. [4] "Aeronomy" later also began to ...
Atmospheric chemistry is a branch of atmospheric science that studies the chemistry of the Earth's atmosphere and that of other planets. This multidisciplinary approach of research draws on environmental chemistry, physics, meteorology, computer modeling, oceanography, geology and volcanology, climatology and other disciplines to understand both natural and human-induced changes in atmospheric ...
The composition of Earth's atmosphere is determined by the by-products of the life that it sustains. Dry air (mixture of gases) from Earth's atmosphere contains 78.08% nitrogen, 20.95% oxygen, 0.93% argon, 0.04% carbon dioxide, and traces of hydrogen, helium, and other "noble" gases (by volume), but generally a variable amount of water vapor is ...
Atmospheric chemistry is a branch of atmospheric science in which the chemistry of the Earth's atmosphere and that of other planets is studied. It is a multidisciplinary field of research and draws on environmental chemistry, physics, meteorology, computer modeling, oceanography, geology and volcanology and other disciplines.
Atmospheric thermodynamics is the study of heat-to-work transformations (and their reverse) that take place in the Earth's atmosphere and manifest as weather or climate. . Atmospheric thermodynamics use the laws of classical thermodynamics, to describe and explain such phenomena as the properties of moist air, the formation of clouds, atmospheric convection, boundary layer meteorology, and ...
From Earths surface to the top of the stratosphere (50 km) is just under 1% of Earth's radius. The mesosphere (/ ˈ m ɛ s ə s f ɪər, ˈ m ɛ z-, ˈ m iː s ə-,-z ə-/; [1] from Ancient Greek μέσος (mésos) 'middle' and -sphere) is the third layer of the atmosphere, directly above the stratosphere and directly below the thermosphere.
The density of the Earth's atmosphere decreases nearly exponentially with altitude. The total mass of the atmosphere is M = ρ A H ≃ 1 kg/cm 2 within a column of one square centimeter above the ground (with ρ A = 1.29 kg/m 3 the atmospheric density on the ground at z = 0 m altitude, and H ≃ 8 km the average atmospheric scale height).