Search results
Results from the WOW.Com Content Network
Here, 243 is the 5th power of 3, or 3 raised to the 5th power. The word "raised" is usually omitted, and sometimes "power" as well, so 3 5 can be simply read "3 to the 5th", or "3 to the 5". Integer exponents
In arithmetic and algebra, the fifth power or sursolid [1] of a number n is the result of multiplying five instances of n together: n 5 = n × n × n × n × n. Fifth powers are also formed by multiplying a number by its fourth power, or the square of a number by its cube. The sequence of fifth powers of integers is:
In mathematics and statistics, sums of powers occur in a number of contexts: . Sums of squares arise in many contexts. For example, in geometry, the Pythagorean theorem involves the sum of two squares; in number theory, there are Legendre's three-square theorem and Jacobi's four-square theorem; and in statistics, the analysis of variance involves summing the squares of quantities.
In arithmetic and algebra, the fourth power of a number n is the result of multiplying four instances of n together. So: n 4 = n × n × n × n. Fourth powers are also formed by multiplying a number by its cube. Furthermore, they are squares of squares.
Standard form may refer to a way of writing very large or very small numbers by comparing the powers of ten. It is also known as Scientific notation. Numbers in standard form are written in this format: a×10 n Where a is a number 1 ≤ a < 10 and n is an integer. ln mathematics and science Canonical form
In arithmetic and algebra the sixth power of a number n is the result of multiplying six instances of n together. So: n 6 = n × n × n × n × n × n. Sixth powers can be formed by multiplying a number by its fifth power, multiplying the square of a number by its fourth power, by cubing a square, or by squaring a cube. The sequence of sixth ...
5 (Epsilon is the 5th letter of the Greek alphabet) ι ¯ {\displaystyle {\overline {\iota }}} 10 ( Iota is the 9th letter of the modern Greek alphabet but it was the 10th letter of an ancient archaic Greek alphabet that had the letter digamma (uppercase: Ϝ, lowercase: ϝ) in the 6th position between epsilon ε and zeta ζ.)
An example of a more complicated (although small enough to be written here) solution is the unique real root of x 5 − 5x + 12 = 0. Let a = √ 2φ −1, b = √ 2φ, and c = 4 √ 5, where φ = 1+ √ 5 / 2 is the golden ratio. Then the only real solution x = −1.84208... is given by