Search results
Results from the WOW.Com Content Network
The term domain is also commonly used in a different sense in mathematical analysis: a domain is a non-empty connected open set in a topological space. In particular, in real and complex analysis , a domain is a non-empty connected open subset of the real coordinate space R n {\displaystyle \mathbb {R} ^{n}} or the complex coordinate space C n ...
is a function from domain X to codomain Y. The yellow oval inside Y is the image of . Sometimes "range" refers to the image and sometimes to the codomain. In mathematics, the range of a function may refer to either of two closely related concepts: the codomain of the function, or; the image of the function.
On the other hand, if a function's domain is continuous, a table can give the values of the function at specific values of the domain. If an intermediate value is needed, interpolation can be used to estimate the value of the function. For example, a portion of a table for the sine function might be given as follows, with values rounded to 6 ...
The table below displays names and domains of the inverse trigonometric functions along with the range of their usual principal values in radians. Name Symbol
An attribute–value system is distinguished from a simple "feature list" representation in that each feature in an attribute–value system may possess a range of values (e.g., feature P 1 below, which has domain of {0,1,2}), rather than simply being present or absent (Barsalou & Hale 1993).
As a consequence, arctan(1) is intuitively related to several values: π /4, 5 π /4, −3 π /4, and so on. We can treat arctan as a single-valued function by restricting the domain of tan x to − π /2 < x < π /2 – a domain over which tan x is monotonically increasing. Thus, the range of arctan(x) becomes − π /2 < y < π /2.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
These properties concern the domain, the codomain and the image of functions. Injective function: has a distinct value for each distinct input. Also called an injection or, sometimes, one-to-one function. In other words, every element of the function's codomain is the image of at most one element of its domain.