Search results
Results from the WOW.Com Content Network
The glucose oxidase enzyme (GOx or GOD) also known as notatin (EC number 1.1.3.4) is an oxidoreductase that catalyses the oxidation of glucose to hydrogen peroxide and D-glucono-δ-lactone. This enzyme is produced by certain species of fungi and insects and displays antibacterial activity when oxygen and glucose are present.
Once glucose enters the cell, the first step is phosphorylation of glucose by a family of enzymes called hexokinases to form glucose 6-phosphate (G6P). This reaction consumes ATP, but it acts to keep the glucose concentration inside the cell low, promoting continuous transport of blood glucose into the cell through the plasma membrane transporters.
Pyruvate oxidation is the step that connects glycolysis and the Krebs cycle. [4] In glycolysis, a single glucose molecule (6 carbons) is split into 2 pyruvates (3 carbons each). Because of this, the link reaction occurs twice for each glucose molecule to produce a total of 2 acetyl-CoA molecules, which can then enter the Krebs cycle.
The overall reaction can be expressed this way: [citation needed] Glucose + 2 NAD + + 2 P i + 2 ADP → 2 pyruvate + 2 NADH + 2 ATP + 2 H + + 2 H 2 O + energy. Starting with glucose, 1 ATP is used to donate a phosphate to glucose to produce glucose 6-phosphate. Glycogen can be converted into glucose 6-phosphate as well with the help of glycogen ...
Gluconeogenesis is a pathway consisting of a series of eleven enzyme-catalyzed reactions. The pathway will begin in either the liver or kidney, in the mitochondria or cytoplasm of those cells, this being dependent on the substrate being used. Many of the reactions are the reverse of steps found in glycolysis. [citation needed]
While the pentose phosphate pathway does involve oxidation of glucose, its primary role is anabolic rather than catabolic. The pathway is especially important in red blood cells (erythrocytes). The reactions of the pathway were elucidated in the early 1950s by Bernard Horecker and co-workers. [2] [3] There are two distinct phases in the pathway.
When sufficient oxygen is not present in the muscle cells for further oxidation of pyruvate and NADH produced in glycolysis, NAD+ is regenerated from NADH by reduction of pyruvate to lactate. [4] Lactate is converted to pyruvate by the enzyme lactate dehydrogenase. [3] The standard free energy change of the reaction is -25.1 kJ/mol. [6]
In reactions involving donation of a hydrogen atom, oxygen is reduced to water (H 2 O) or hydrogen peroxide (H 2 O 2). Some oxidation reactions, such as those involving monoamine oxidase or xanthine oxidase, typically do not involve free molecular oxygen. [1] [2] The oxidases are a subclass of the oxidoreductases. The use of dioxygen is the ...