Search results
Results from the WOW.Com Content Network
A drainage equation is an equation describing the relation between depth and spacing of parallel subsurface drains, depth of the watertable, depth and hydraulic conductivity of the soils. It is used in drainage design. Parameters in Hooghoudt's drainage equation. A well known steady-state drainage
WAFLEX is set up as a network, where each cell is river reach, demand node or reservoir. Each cell contains a simple formula to add water flowing into it from adjacent cells, and to subtract any demand connected to that cell. The network is set up twice, in demand mode and in supply mode. [1] The inputs to WAFLEX are:
Point drainage, which intercepts water at gullies (points). Gullies connect to drainage pipes beneath the ground surface, so deep excavation is required to facilitate this system. Support for deep trenches is required in the shape of planking, strutting or shoring. Channel drainage, which intercepts water along the entire run of the channel.
The drain discharge determines the drain spacing IEFF = 1 − (Osu + Dtr + Oaq − Rai − Lca − Iaq) / Irr Likewise the safe yield of wells , extracting water from the aquifer without overexploitation , can be determined using the geohydrologic water balance or the overall water balance , as defined in the section "Combined balances ...
According to Montgomery and Dietrich’s equation, drainage density is a function of vertical hydraulic conductivity. Coarse-grained sediment like sand would have a higher hydraulic conductivity and are predicted by the equation to form a relatively higher drainage density system than a system formed by finer silt with a lower hydraulic ...
The first modern theoretical models for soil consolidation were proposed in the 1920s by Terzaghi and Fillunger, according to two substantially different approaches. [1] The former was based on diffusion equations in eulerian notation, whereas the latter considered the local Newton’s law for both liquid and solid phases, in which main variables, such as partial pressure, porosity, local ...
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The energy balance of groundwater flow can be applied to flow of groundwater to subsurface drains. [2] The computer program EnDrain [3] compares the outcome of the traditional drain spacing equation, based on Darcy's law together with the continuity equation (i.e. conservation of mass), with the solution obtained by the energy balance and it can be seen that drain spacings are wider in the ...