Search results
Results from the WOW.Com Content Network
The Pythagorean theorem has at least 370 known proofs. [1]In mathematics and formal logic, a theorem is a statement that has been proven, or can be proven. [a] [2] [3] The proof of a theorem is a logical argument that uses the inference rules of a deductive system to establish that the theorem is a logical consequence of the axioms and previously proved theorems.
Due to the Pythagorean theorem the number () has the simple geometric meanings shown in the diagram: For a point outside the circle () is the squared tangential distance | | of point to the circle . Points with equal power, isolines of Π ( P ) {\displaystyle \Pi (P)} , are circles concentric to circle c {\displaystyle c} .
Diagram of the two algebraic proofs. The theorem can be proved algebraically using four copies of the same triangle arranged symmetrically around a square with side c, as shown in the lower part of the diagram. [5] This results in a larger square, with side a + b and area (a + b) 2.
In proof by exhaustion, the conclusion is established by dividing it into a finite number of cases and proving each one separately. The number of cases sometimes can become very large. For example, the first proof of the four color theorem was a proof by exhaustion with 1,936 cases. This proof was controversial because the majority of the cases ...
Menelaus's theorem, case 1: line DEF passes inside triangle ABC. In Euclidean geometry, Menelaus's theorem, named for Menelaus of Alexandria, is a proposition about triangles in plane geometry. Suppose we have a triangle ABC, and a transversal line that crosses BC, AC, AB at points D, E, F respectively, with D, E, F distinct from A, B, C. A ...
Theorem. Let the topological space X be covered by the interiors of two subspaces X 1, X 2 and let A be a set which meets each path component of X 1, X 2 and X 0 = X 1 ∩ X 2. Then A meets each path component of X and the diagram P of morphisms induced by inclusion is a pushout diagram in the category of groupoids. [4]
In calculus, the squeeze theorem (also known as the sandwich theorem, among other names [a]) is a theorem regarding the limit of a function that is bounded between two other functions. The squeeze theorem is used in calculus and mathematical analysis , typically to confirm the limit of a function via comparison with two other functions whose ...
Continuity equations offer more examples of laws with both differential and integral forms, related to each other by the divergence theorem. In fluid dynamics , electromagnetism , quantum mechanics , relativity theory , and a number of other fields, there are continuity equations that describe the conservation of mass, momentum, energy ...