enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Division algorithm - Wikipedia

    en.wikipedia.org/wiki/Division_algorithm

    Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.

  3. Long division - Wikipedia

    en.wikipedia.org/wiki/Long_division

    The division also occurs in the column, but the quotient (result) is written below the divider, and separated by the horizontal line. The same method is used in Iran, Vietnam, and Mongolia. 127| 4 − 124 |31,75 30 − 28 20 − 20 0

  4. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    Using Euclidean division, 9 divided by 4 is 2 with remainder 1. In other words, each person receives 2 slices of pie, and there is 1 slice left over. This can be confirmed using multiplication, the inverse of division: if each of the 4 people received 2 slices, then 4 × 2 = 8 slices were given out in total. Adding the 1 slice remaining, the ...

  5. Quotition and partition - Wikipedia

    en.wikipedia.org/wiki/Quotition_and_partition

    Thought of quotitively, a division problem can be solved by repeatedly subtracting groups of the size of the divisor. [1] For instance, suppose each egg carton fits 12 eggs, and the problem is to find how many cartons are needed to fit 36 eggs in total. Groups of 12 eggs at a time can be separated from the main pile until none are left, 3 groups:

  6. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    L = p 1 p 2 …p m = q 1 q 2 …q n . Since each prime p divides L by assumption, it must also divide one of the q factors; since each q is prime as well, it must be that p = q. Iteratively dividing by the p factors shows that each p has an equal counterpart q; the two prime factorizations are identical except for their order. The unique ...

  7. Ruffini's rule - Wikipedia

    en.wikipedia.org/wiki/Ruffini's_rule

    Here is an example of polynomial division as described above. Let: = +() = +P(x) will be divided by Q(x) using Ruffini's rule.The main problem is that Q(x) is not a binomial of the form x − r, but rather x + r.

  8. Division (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Division_(mathematics)

    The division with remainder or Euclidean division of two natural numbers provides an integer quotient, which is the number of times the second number is completely contained in the first number, and a remainder, which is the part of the first number that remains, when in the course of computing the quotient, no further full chunk of the size of ...

  9. Remainder - Wikipedia

    en.wikipedia.org/wiki/Remainder

    The number q is called the quotient, while r is called the remainder. (For a proof of this result, see Euclidean division. For algorithms describing how to calculate the remainder, see division algorithm.) The remainder, as defined above, is called the least positive remainder or simply the remainder. [2]