Search results
Results from the WOW.Com Content Network
Consider a long, thin wire of charge and length .To calculate the average linear charge density, ¯, of this one dimensional object, we can simply divide the total charge, , by the total length, : ¯ = If we describe the wire as having a varying charge (one that varies as a function of position along the length of the wire, ), we can write: = Each infinitesimal unit of charge, , is equal to ...
Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m −1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal nĚ‚, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
mass density usually simply called density kilogram per cubic meter (kg/m 3) volume charge density: coulomb per cubic meter (C/m 3) resistivity: ohm meter (Ω⋅m) sigma: summation operator area charge density: coulomb per square meter (C/m 2) electrical conductivity: siemens per meter (S/m) normal stress: pascal (Pa)
Electric charge: Q: The force per unit electric field strength coulomb (C = A⋅s) T I: extensive, conserved Electric charge density: ρ Q: Electric charge per unit volume C/m 3: L −3 T I: intensive Electrical conductance: G: Measure for how easily current flows through a material siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical ...
Lambda indicates an eigenvalue in the mathematics of linear algebra. In the physics of particles, lambda indicates the thermal de Broglie wavelength; In the physics of electric fields, lambda sometimes indicates the linear charge density of a uniform line of electric charge (measured in coulombs per meter).
the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J. The universal constants appearing in the equations (the first two ones explicitly only in the SI formulation) are: the permittivity of free space, ε 0, and; the permeability of free space, μ 0, and
The current 3-form can be integrated over a 3-dimensional space-time region. The physical interpretation of this integral is the charge in that region if it is spacelike, or the amount of charge that flows through a surface in a certain amount of time if that region is a spacelike surface cross a timelike interval.