Search results
Results from the WOW.Com Content Network
Linear charge density (λ) is the quantity of charge per unit length, measured in coulombs per meter (C⋅m −1), at any point on a line charge distribution. Charge density can be either positive or negative, since electric charge can be either positive or negative.
Consider a long, thin wire of charge and length .To calculate the average linear charge density, ¯, of this one dimensional object, we can simply divide the total charge, , by the total length, : ¯ = If we describe the wire as having a varying charge (one that varies as a function of position along the length of the wire, ), we can write: = Each infinitesimal unit of charge, , is equal to ...
Continuous charge distribution. The volume charge density ρ is the amount of charge per unit volume (cube), surface charge density σ is amount per unit surface area (circle) with outward unit normal n̂, d is the dipole moment between two point charges, the volume density of these is the polarization density P.
mass density usually simply called density kilogram per cubic meter (kg/m 3) volume charge density: coulomb per cubic meter (C/m 3) resistivity: ohm meter (Ω⋅m) sigma: summation operator area charge density: coulomb per square meter (C/m 2) electrical conductivity: siemens per meter (S/m) normal stress: pascal (Pa)
Electric charge: Q: The force per unit electric field strength coulomb (C = A⋅s) T I: extensive, conserved Electric charge density: ρ Q: Electric charge per unit volume C/m 3: L −3 T I: intensive Electrical conductance: G: Measure for how easily current flows through a material siemens (S = Ω −1) L −2 M −1 T 3 I 2: scalar Electrical ...
Symbol Quantity Expression in terms of SI base units coulomb per square metre: C/m 2: electric displacement field, polarization density: m −2 ⋅s⋅A coulomb per cubic metre: C/m 3: electric charge density: m −3 ⋅s⋅A ampere per square metre: A/m 2: electric current density: m −2 ⋅A siemens per metre: S/m electrical conductivity: m ...
Symbol [1] Name of quantity Unit name Symbol Base units E energy: joule: J = C⋅V = W⋅s kg⋅m 2 ⋅s −2: Q electric charge: coulomb: C A⋅s I electric current: ampere: A = C/s = W/V A J electric current density: ampere per square metre A/m 2: A⋅m −2: U, ΔV; Δϕ; E, ξ potential difference; voltage; electromotive force: volt: V = J ...
the total electric charge density (total charge per unit volume), ρ, and; the total electric current density (total current per unit area), J. The universal constants appearing in the equations (the first two ones explicitly only in the SI formulation) are: the permittivity of free space, ε 0, and; the permeability of free space, μ 0, and