Search results
Results from the WOW.Com Content Network
Fig. 1: AVL tree with balance factors (green) In computer science, an AVL tree (named after inventors Adelson-Velsky and Landis) is a self-balancing binary search tree. In an AVL tree, the heights of the two child subtrees of any node differ by at most one; if at any time they differ by more than one, rebalancing is done to restore this property.
In computer science, join-based tree algorithms are a class of algorithms for self-balancing binary search trees. This framework aims at designing highly-parallelized algorithms for various balanced binary search trees.
In computer science, tree traversal (also known as tree search and walking the tree) is a form of graph traversal and refers to the process of visiting (e.g. retrieving, updating, or deleting) each node in a tree data structure, exactly once. Such traversals are classified by the order in which the nodes are visited.
Binary tree sort, in particular, is likely to be slower than merge sort, quicksort, or heapsort, because of the tree-balancing overhead as well as cache access patterns.) Self-balancing BSTs are flexible data structures, in that it's easy to extend them to efficiently record additional information or perform new operations.
[20] [21] The AVL tree is another structure supporting () search, insertion, and removal. AVL trees can be colored red–black, and thus are a subset of red-black trees. The worst-case height of AVL is 0.720 times the worst-case height of red-black trees, so AVL trees are more rigidly balanced.
Diagram depicting a height-balanced w:AVL Tree: Date: 9 January 2007: Source: Own work: Author: ... AVL Tree (data structure). File usage. The following 3 pages use ...
The weak AVL tree is defined by the weak AVL rule: Weak AVL rule: all rank differences are 1 or 2, and all leaf nodes have rank 0. Note that weak AVL tree generalizes the AVL tree by allowing for 2,2 type node. A simple proof shows that a weak AVL tree can be colored in a way that represents a red-black tree.
In computer science, an optimal binary search tree (Optimal BST), sometimes called a weight-balanced binary tree, [1] is a binary search tree which provides the smallest possible search time (or expected search time) for a given sequence of accesses (or access probabilities). Optimal BSTs are generally divided into two types: static and dynamic.