Search results
Results from the WOW.Com Content Network
The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is
In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory .
Lyapunov time, characteristic timescale on which a dynamical system is chaotic Probability theory , the branch of mathematics concerned with probability Dirichlet problem , the problem of finding a function which solves a specified partial differential equation in the interior of a given region that takes prescribed values on the boundary of ...
The contribution to the theory made by N. G. Chetaev [2] was so significant that many mathematicians, physicists and engineers consider him Lyapunov's direct successor and the next-in-line scientific descendant in the creation and development of the mathematical theory of stability.
In this case, A = -1 and X(0, y) = Y(0, y) = 0 for all y, so this system satisfy the hypothesis of Lyapunov-Malkin theorem. The figure below shows a plot of this vector field along with some trajectories that pass near (0,0).
Conley's decomposition is characterized by a function known as complete Lyapunov function. Unlike traditional Lyapunov functions that are used to assert the stability of an equilibrium point (or a fixed point) and can be defined only on the basin of attraction of the corresponding attractor, complete Lyapunov functions must be defined on the whole phase-portrait.
The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.
Lyapunov–Schmidt reduction has been used in economics, natural sciences, and engineering [1] often in combination with bifurcation theory, perturbation theory, and regularization. [ 1 ] [ 2 ] [ 3 ] LS reduction is often used to rigorously regularize partial differential equation models in chemical engineering resulting in models that are ...