enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. No-slip condition - Wikipedia

    en.wikipedia.org/wiki/No-slip_condition

    The no-slip condition is an empirical assumption that has been useful in modelling many macroscopic experiments. It was one of three alternatives that were the subject of contention in the 19th century, with the other two being the stagnant-layer (a thin layer of stationary fluid on which the rest of the fluid flows) and the partial slip (a finite relative velocity between solid and fluid ...

  3. Boundary conditions in fluid dynamics - Wikipedia

    en.wikipedia.org/wiki/Boundary_conditions_in...

    Showing wall boundary condition. The most common boundary that comes upon in confined fluid flow problems is the wall of the conduit. The appropriate requirement is called the no-slip boundary condition, wherein the normal component of velocity is fixed at zero, and the tangential component is set equal to the velocity of the wall. [1]

  4. Boundary layer - Wikipedia

    en.wikipedia.org/wiki/Boundary_layer

    Velocity Boundary Layer (Top, orange) and Temperature Boundary Layer (Bottom, green) share a functional form due to similarity in the Momentum/Energy Balances and boundary conditions. Note that in many cases, the no-slip boundary condition holds that , the fluid velocity at the surface of the plate equals the velocity of the plate at all locations.

  5. Von Kármán constant - Wikipedia

    en.wikipedia.org/wiki/Von_Kármán_constant

    In fluid dynamics, the von Kármán constant (or Kármán's constant), named for Theodore von Kármán, is a dimensionless constant involved in the logarithmic law describing the distribution of the longitudinal velocity in the wall-normal direction of a turbulent fluid flow near a boundary with a no-slip condition.

  6. Hagen–Poiseuille equation - Wikipedia

    en.wikipedia.org/wiki/Hagen–Poiseuille_equation

    The no slip boundary condition at the pipe wall requires that u = 0 at r = R (radius of the pipe), which yields c 2 = ⁠ GR 2 / 4μ ⁠. Thus we have finally the following parabolic velocity profile: = (). The maximum velocity occurs at the pipe centerline (r = 0), u max = ⁠ GR 2 / 4μ ⁠.

  7. Stokes problem - Wikipedia

    en.wikipedia.org/wiki/Stokes_problem

    which is zero at the wall y = 0, corresponding with the no-slip condition for a wall at rest. This situation is often encountered in sound waves near a solid wall, or for the fluid motion near the sea bed in water waves. The vorticity, for the oscillating flow near a wall at rest, is equal to the vorticity in case of an oscillating plate but of ...

  8. AOL Mail

    mail.aol.com/d?reason=invalid_cred

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Navier–Stokes_equations

    The boundary condition is the no slip condition. This problem is easily solved for the flow field: u ( y ) = y − y 2 2 . {\displaystyle u(y)={\frac {y-y^{2}}{2}}.} From this point onward, more quantities of interest can be easily obtained, such as viscous drag force or net flow rate.