Search results
Results from the WOW.Com Content Network
For example, a wavenumber in inverse centimeters can be converted to a frequency expressed in the unit gigahertz by multiplying by 29.979 2458 cm/ns (the speed of light, in centimeters per nanosecond); [5] conversely, an electromagnetic wave at 29.9792458 GHz has a wavelength of 1 cm in free space.
For periodic waves in nondispersive media (that is, media in which the wave speed is independent of frequency), frequency has an inverse relationship to the wavelength, λ . Even in dispersive media, the frequency f of a sinusoidal wave is equal to the phase velocity v of the wave divided by the wavelength λ of the wave: f = v λ ...
If the filter shows amplitude ripple within the passband, the x dB point refers to the point where the gain is x dB below the nominal passband gain rather than x dB below the maximum gain. In signal processing and control theory the bandwidth is the frequency at which the closed-loop system gain drops 3 dB below peak.
For an incident wave traveling from one medium (where the wave speed is c 1) to another medium (where the wave speed is c 2), one part of the wave will transmit into the second medium, while another part reflects back into the other direction and stays in the first medium. The amplitude of the transmitted wave and the reflected wave can be ...
In the context of electromagnetics and optics, the frequency is some function ω(k) of the wave number, so in general, the phase velocity and the group velocity depend on specific medium and frequency. The ratio between the speed of light c and the phase velocity v p is known as the refractive index, n = c / v p = ck / ω.
The equation says the matter wave frequency in vacuum varies with wavenumber (= /) in the non-relativistic approximation. The variation has two parts: a constant part due to the de Broglie frequency of the rest mass ( ℏ ω 0 = m 0 c 2 {\displaystyle \hbar \omega _{0}=m_{0}c^{2}} ) and a quadratic part due to kinetic energy.
A is the amplitude of the wave (the peak magnitude of the oscillation), φ is a phase offset , ω is the (temporal) angular frequency of the wave, describing how many radians it traverses per unit of time, and related to the period T by the equation ω = 2 π T , {\displaystyle \omega ={\tfrac {2\pi }{T}},}
Vibration, standing waves in a string. The fundamental and the first 5 overtones in the harmonic series. A vibration in a string is a wave. Resonance causes a vibrating string to produce a sound with constant frequency, i.e. constant pitch. If the length or tension of the string is correctly adjusted, the sound produced is a musical tone.