enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hidden_Markov_model

    Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]

  3. Multiple sequence alignment - Wikipedia

    en.wikipedia.org/wiki/Multiple_sequence_alignment

    A profile hidden Markov model (HMM) modelling a multiple sequence alignment. A hidden Markov model (HMM) is a probabilistic model that can assign likelihoods to all possible combinations of gaps, matches, and mismatches, to determine the most likely MSA or set of possible MSAs. HMMs can produce a single highest-scoring output but can also ...

  4. Markov model - Wikipedia

    en.wikipedia.org/wiki/Markov_model

    A hidden Markov model is a Markov chain for which the state is only partially observable or noisily observable. In other words, observations are related to the state of the system, but they are typically insufficient to precisely determine the state. Several well-known algorithms for hidden Markov models exist.

  5. HMMER - Wikipedia

    en.wikipedia.org/wiki/HMMER

    A profile HMM modelling a multiple sequence alignment. HMMER is a free and commonly used software package for sequence analysis written by Sean Eddy. [2] Its general usage is to identify homologous protein or nucleotide sequences, and to perform sequence alignments.

  6. Hierarchical hidden Markov model - Wikipedia

    en.wikipedia.org/wiki/Hierarchical_hidden_Markov...

    The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]

  7. Sequence alignment - Wikipedia

    en.wikipedia.org/wiki/Sequence_alignment

    Hidden Markov models have been used to produce probability scores for a family of possible multiple sequence alignments for a given query set; although early HMM-based methods produced underwhelming performance, later applications have found them especially effective in detecting remotely related sequences because they are less susceptible to ...

  8. Sequence labeling - Wikipedia

    en.wikipedia.org/wiki/Sequence_labeling

    This leads naturally to the hidden Markov model (HMM), one of the most common statistical models used for sequence labeling. Other common models in use are the maximum entropy Markov model and conditional random field.

  9. HTK (software) - Wikipedia

    en.wikipedia.org/wiki/HTK_(software)

    HTK (Hidden Markov Model Toolkit) is a proprietary software toolkit for handling HMMs.It is mainly intended for speech recognition, but has been used in many other pattern recognition applications that employ HMMs, including speech synthesis, character recognition and DNA sequencing.