Search results
Results from the WOW.Com Content Network
Figure 1. Probabilistic parameters of a hidden Markov model (example) X — states y — possible observations a — state transition probabilities b — output probabilities. In its discrete form, a hidden Markov process can be visualized as a generalization of the urn problem with replacement (where each item from the urn is returned to the original urn before the next step). [7]
A profile hidden Markov model (HMM) modelling a multiple sequence alignment. A hidden Markov model (HMM) is a probabilistic model that can assign likelihoods to all possible combinations of gaps, matches, and mismatches, to determine the most likely MSA or set of possible MSAs. HMMs can produce a single highest-scoring output but can also ...
A hidden Markov model is a Markov chain for which the state is only partially observable or noisily observable. In other words, observations are related to the state of the system, but they are typically insufficient to precisely determine the state. Several well-known algorithms for hidden Markov models exist.
A profile HMM modelling a multiple sequence alignment. HMMER is a free and commonly used software package for sequence analysis written by Sean Eddy. [2] Its general usage is to identify homologous protein or nucleotide sequences, and to perform sequence alignments.
The hierarchical hidden Markov model (HHMM) is a statistical model derived from the hidden Markov model (HMM). In an HHMM, each state is considered to be a self-contained probabilistic model. More precisely, each state of the HHMM is itself an HHMM. HHMMs and HMMs are useful in many fields, including pattern recognition. [1] [2]
Hidden Markov models have been used to produce probability scores for a family of possible multiple sequence alignments for a given query set; although early HMM-based methods produced underwhelming performance, later applications have found them especially effective in detecting remotely related sequences because they are less susceptible to ...
This leads naturally to the hidden Markov model (HMM), one of the most common statistical models used for sequence labeling. Other common models in use are the maximum entropy Markov model and conditional random field.
HTK (Hidden Markov Model Toolkit) is a proprietary software toolkit for handling HMMs.It is mainly intended for speech recognition, but has been used in many other pattern recognition applications that employ HMMs, including speech synthesis, character recognition and DNA sequencing.