Search results
Results from the WOW.Com Content Network
Anaerobic cellular respiration and fermentation generate ATP in very different ways, and the terms should not be treated as synonyms. Cellular respiration (both aerobic and anaerobic) uses highly reduced chemical compounds such as NADH and FADH 2 (for example produced during glycolysis and the citric acid cycle) to establish an electrochemical gradient (often a proton gradient) across a membrane.
Cellular respiration is a vital process that occurs in the cells of all [[plants and some bacteria ]]. [2] [better source needed] Respiration can be either aerobic, requiring oxygen, or anaerobic; some organisms can switch between aerobic and anaerobic respiration. [3] [better source needed]
Anaerobic respiration is correspondingly less efficient than aerobic respiration. In the absence of oxygen, not all of the carbon-carbon bonds in glucose can be broken to release energy. A great deal of extractable energy is left in the waste products. Anaerobic respiration generally occurs in prokaryotes in environments that do not contain oxygen.
Frequently referenced, but often misunderstood, the difference between the terms "aerobic" and "anaerobic" seems small but is actually big (and important).
An aerobic organism or aerobe is an organism that can survive and grow in an oxygenated environment. [1] The ability to exhibit aerobic respiration may yield benefits to the aerobic organism, as aerobic respiration yields more energy than anaerobic respiration. [2] Energy production of the cell involves the synthesis of ATP by an enzyme called ...
Obligate anaerobes convert nutrients into energy through anaerobic respiration or fermentation. In aerobic respiration, the pyruvate generated from glycolysis is converted to acetyl-CoA. This is then broken down via the TCA cycle and electron transport chain. Anaerobic respiration differs from aerobic respiration in that it uses an electron ...
The term metabolism refers to the various series of chemical reactions that take place within the body. Aerobic refers to the presence of oxygen, whereas anaerobic means with a series of chemical reactions that does not require the presence of oxygen. The ATP-CP series and the lactic acid series are anaerobic, whereas the oxygen series is aerobic.
Anaerobic respiration and its end products can facilitate symbiosis between anaerobes and aerobes. This occurs across taxa, often in compensation for nutritional needs. [26] Anaerobiosis and symbiosis are found in interactions between ciliates and prokaryotes. Anaerobic ciliates interact with prokaryotes in an endosymbiotic relationship. These ...