Search results
Results from the WOW.Com Content Network
A cusp on the graph of a continuous function. At zero, the function is continuous but not differentiable. If f is differentiable at a point x 0, then f must also be continuous at x 0. In particular, any differentiable function must be continuous at every point in its domain. The converse does not hold: a
A lemma also established by Aull as a stepping stone to this theorem states that if f is continuous on the closed interval [a, b] and symmetrically differentiable on the open interval (a, b), and additionally f(b) > f(a), then there exist a point z in (a, b) where the symmetric derivative is non-negative, or with the notation used above, f s (z ...
This function is continuous on the closed interval [−r, r] and differentiable in the open interval (−r, r), but not differentiable at the endpoints −r and r. Since f (− r ) = f ( r ) , Rolle's theorem applies, and indeed, there is a point where the derivative of f is zero.
A sigmoid function is any mathematical function whose graph has a characteristic S-shaped or sigmoid curve. A common example of a sigmoid function is the logistic function , which is defined by the formula: [ 1 ]
The mean value theorem gives a relationship between values of the derivative and values of the original function. If f(x) is a real-valued function and a and b are numbers with a < b, then the mean value theorem says that under mild hypotheses, the slope between the two points (a, f(a)) and (b, f(b)) is equal to the slope of the tangent line to ...
The differential was first introduced via an intuitive or heuristic definition by Isaac Newton and furthered by Gottfried Leibniz, who thought of the differential dy as an infinitely small (or infinitesimal) change in the value y of the function, corresponding to an infinitely small change dx in the function's argument x.
The graph of f is a concave up parabola, the critical point is the abscissa of the vertex, where the tangent line is horizontal, and the critical value is the ordinate of the vertex and may be represented by the intersection of this tangent line and the y-axis. The function () = / is defined for all x and differentiable for x ≠ 0, with the ...
Of course, the Jacobian matrix of the composition g ° f is a product of corresponding Jacobian matrices: J x (g ° f) =J ƒ(x) (g)J x (ƒ). This is a higher-dimensional statement of the chain rule. For real valued functions from R n to R (scalar fields), the Fréchet derivative corresponds to a vector field called the total derivative.