enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/NavierStokes_equations

    The NavierStokes equations (/ n æ v ˈ j eɪ s t oʊ k s / nav-YAY STOHKS) are partial differential equations which describe the motion of viscous fluid substances. They were named after French engineer and physicist Claude-Louis Navier and the Irish physicist and mathematician George Gabriel Stokes. They were developed over several decades ...

  3. Derivation of the Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Derivation_of_the_Navier...

    This equation is called the mass continuity equation, or simply the continuity equation. This equation generally accompanies the NavierStokes equation. In the case of an incompressible fluid, ⁠ Dρ / Dt ⁠ = 0 (the density following the path of a fluid element is constant) and the equation reduces to:

  4. SIMPLE algorithm - Wikipedia

    en.wikipedia.org/wiki/SIMPLE_algorithm

    In computational fluid dynamics (CFD), the SIMPLE algorithm is a widely used numerical procedure to solve the NavierStokes equations. SIMPLE is an acronym for Semi-Implicit Method for Pressure Linked Equations. The SIMPLE algorithm was developed by Prof. Brian Spalding and his student Suhas Patankar at Imperial College London in the early ...

  5. Turbulence modeling - Wikipedia

    en.wikipedia.org/wiki/Turbulence_modeling

    The NavierStokes equations govern the velocity and pressure of a fluid flow. In a turbulent flow, each of these quantities may be decomposed into a mean part and a fluctuating part. Averaging the equations gives the Reynolds-averaged NavierStokes (RANS) equations, which govern the mean flow.

  6. Dynamic similarity (Reynolds and Womersley numbers)

    en.wikipedia.org/wiki/Dynamic_similarity...

    The Reynolds and Womersley Numbers are also used to calculate the thicknesses of the boundary layers that can form from the fluid flow’s viscous effects. The Reynolds number is used to calculate the convective inertial boundary layer thickness that can form, and the Womersley number is used to calculate the transient inertial boundary thickness that can form.

  7. Rayleigh problem - Wikipedia

    en.wikipedia.org/wiki/Rayleigh_problem

    In fluid dynamics, Rayleigh problem also known as Stokes first problem is a problem of determining the flow created by a sudden movement of an infinitely long plate from rest, named after Lord Rayleigh and Sir George Stokes. This is considered as one of the simplest unsteady problems that have an exact solution for the Navier-Stokes equations.

  8. Hydrodynamic stability - Wikipedia

    en.wikipedia.org/wiki/Hydrodynamic_stability

    NavierStokes equation and the continuity equation [ edit ] In order to analytically find the stability of fluid flows, it is useful to note that hydrodynamic stability has a lot in common with stability in other fields, such as magnetohydrodynamics , plasma physics and elasticity ; although the physics is different in each case, the ...

  9. Reynolds-averaged Navier–Stokes equations - Wikipedia

    en.wikipedia.org/wiki/Reynolds-averaged_Navier...

    The Reynolds-averaged NavierStokes equations (RANS equations) are time-averaged [a] equations of motion for fluid flow. The idea behind the equations is Reynolds decomposition , whereby an instantaneous quantity is decomposed into its time-averaged and fluctuating quantities, an idea first proposed by Osborne Reynolds . [ 1 ]