Search results
Results from the WOW.Com Content Network
For example, from Fe 2+ + 2 e − ⇌ Fe(s) (–0.44 V), the energy to form one neutral atom of Fe(s) from one Fe 2+ ion and two electrons is 2 × 0.44 eV = 0.88 eV, or 84 907 J/(mol e −). That value is also the standard formation energy (∆ G f °) for an Fe 2+ ion, since e − and Fe( s ) both have zero formation energy.
To avoid possible ambiguities, the electrode potential thus defined can also be referred to as Gibbs–Stockholm electrode potential. In both conventions, the standard hydrogen electrode is defined to have a potential of 0 V. Both conventions also agree on the sign of E for a half-cell reaction when it is written as a reduction.
Latimer diagrams can be used in the construction of Frost diagrams, as a concise summary of the standard electrode potentials relative to the element.Since Δ r G o = -nFE o, the electrode potential is a representation of the Gibbs energy change for the given reduction.
Bipolar electrochemistry scheme. In electrochemistry, standard electrode potential, or , is a measure of the reducing power of any element or compound.The IUPAC "Gold Book" defines it as; "the value of the standard emf (electromotive force) of a cell in which molecular hydrogen under standard pressure is oxidized to solvated protons at the left-hand electrode".
From Wikipedia, the free encyclopedia. Redirect page. Redirect to: Standard electrode potential (data page)
The potential of zero charge is used for determination of the absolute electrode potential in a given electrolyte. IUPAC also defines the potential difference with respect to the potential of zero charge as: E pzc = E − E σ=0. where: E pzc is the electrode potential difference with respect to the point of zero charge, E σ=0; E is the ...
The formal potential is thus the reversible potential of an electrode at equilibrium immersed in a solution where reactants and products are at unit concentration. [4] If any small incremental change of potential causes a change in the direction of the reaction, i.e. from reduction to oxidation or vice versa , the system is close to equilibrium ...
Absolute electrode potential, in electrochemistry, according to an IUPAC definition, [1] is the electrode potential of a metal measured with respect to a universal reference system (without any additional metal–solution interface).