enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Stepped reckoner - Wikipedia

    en.wikipedia.org/wiki/Stepped_reckoner

    The machine performs multiplication by repeated addition, and division by repeated subtraction. The basic operation performed is to add (or subtract) the operand number to the accumulator register, as many times as desired (to subtract, the operating crank is turned in the opposite direction). The number of additions (or subtractions) is ...

  3. Murderous Maths - Wikipedia

    en.wikipedia.org/wiki/Murderous_Maths

    The following are the thirteen books that are available in the series. Guaranteed to Bend Your Brain (previously Murderous Maths) (1997), ISBN 0-439-01156-6 - (addition, subtraction, multiplication, division, percentages, powers, tessellation, Roman numerals, the development of the "10" and the place system, shortcomings of calculators, prime numbers, time - how the year and day got divided ...

  4. Calculator Here We GO! - Wikipedia

    en.wikipedia.org/wiki/Calculator_Here_We_GO!

    Pascal's calculator could add and subtract two numbers directly and thus, if the tedium could be borne, multiply and divide by repetition. Schickard's machine, constructed several decades earlier, used a clever set of mechanised multiplication tables to ease the process of multiplication and division with the adding machine as a means of ...

  5. Rationalisation (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Rationalisation_(mathematics)

    In elementary algebra, root rationalisation (or rationalization) is a process by which radicals in the denominator of an algebraic fraction are eliminated.. If the denominator is a monomial in some radical, say , with k < n, rationalisation consists of multiplying the numerator and the denominator by , and replacing by x (this is allowed, as, by definition, a n th root of x is a number that ...

  6. Mental calculation - Wikipedia

    en.wikipedia.org/wiki/Mental_calculation

    492 is close to 500, which is easy to multiply by. Add and subtract 8 (the difference between 500 and 492) to get 492 -> 484, 500. Multiply these numbers together to get 242,000 (This can be done efficiently by dividing 484 by 2 = 242 and multiplying by 1000). Finally, add the difference (8) squared (8 2 = 64) to the result: 492 2 = 242,064

  7. Methods of computing square roots - Wikipedia

    en.wikipedia.org/wiki/Methods_of_computing...

    A method analogous to piece-wise linear approximation but using only arithmetic instead of algebraic equations, uses the multiplication tables in reverse: the square root of a number between 1 and 100 is between 1 and 10, so if we know 25 is a perfect square (5 × 5), and 36 is a perfect square (6 × 6), then the square root of a number greater than or equal to 25 but less than 36, begins with ...

  8. Elementary algebra - Wikipedia

    en.wikipedia.org/wiki/Elementary_algebra

    To solve this kind of equation, the technique is add, subtract, multiply, or divide both sides of the equation by the same number in order to isolate the variable on one side of the equation. Once the variable is isolated, the other side of the equation is the value of the variable. [37] This problem and its solution are as follows: Solving for x

  9. Fraction - Wikipedia

    en.wikipedia.org/wiki/Fraction

    A fraction may also contain radicals in the numerator or the denominator. If the denominator contains radicals, it can be helpful to rationalize it (compare Simplified form of a radical expression), especially if further operations, such as adding or comparing that fraction to another, are to be carried out. It is also more convenient if ...