enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Organobromine chemistry - Wikipedia

    en.wikipedia.org/wiki/Organobromine_chemistry

    RCH=CH 2 + HBr → RCHBrCH 3. Under free radical conditions, the direction of the addition can be reversed. Free-radical addition is used commercially for the synthesis of 1-bromoalkanes, precursors to tertiary amines and quaternary ammonium salts. 2-Phenethyl bromide (C 6 H 5 CH 2 CH 2 Br) is produced via this route from styrene.

  3. Dewar–Chatt–Duncanson model - Wikipedia

    en.wikipedia.org/wiki/Dewar–Chatt–Duncanson...

    On the left, a filled pi-orbital on C 2 H 4 overlaps with an empty d-orbital on the metal. On the right, an empty pi-antibonding orbital on C 2 H 4 overlaps with a filled d-orbital on the metal. The Dewar–Chatt–Duncanson model is a model in organometallic chemistry that explains the chemical bonding in transition metal alkene complexes.

  4. 1-Bromopentane - Wikipedia

    en.wikipedia.org/wiki/1-Bromopentane

    Most 1-bromoalkanes are prepared by free-radical addition of hydrogen bromide to the 1-alkene, which is 1-pentene in the case of 1-bromopentane. These conditions lead to anti-Markovnikov addition, giving the 1-bromo derivative. [2] It is also formed by the reaction of 1-pentanol with hydrogen bromide.

  5. Takai olefination - Wikipedia

    en.wikipedia.org/wiki/Takai_olefination

    Prior to the introduction of this chromium-based protocol, olefination reactions generally gave Z alkenes or mixtures of isomers. [1] Similar olefination reactions had been performed using a variety of reagents such as zinc and lead chloride; [5] however, these olefination reactions often lead to the formation of diols—the McMurry reaction—rather than the methylenation or alkylidenation of ...

  6. Wittig reaction - Wikipedia

    en.wikipedia.org/wiki/Wittig_reaction

    Wittig reactions are most commonly used to convert aldehydes and ketones to alkenes. [1] [2] [3] Most often, the Wittig reaction is used to introduce a methylene group using methylenetriphenylphosphorane (Ph 3 P=CH 2). Using this reagent, even a sterically hindered ketone such as camphor can be converted to its methylene derivative.

  7. Straight-chain terminal alkene - Wikipedia

    en.wikipedia.org/wiki/Straight-chain_terminal_alkene

    Straight-chain terminal alkenes, also called linear alpha olefins (LAO) or normal alpha olefins (NAO), are alkenes (olefins) having a chemical formula C n H 2n, distinguished from other alkenes with a similar molecular formula by being terminal alkenes, in which the double bond occurs at the alpha (α-, 1-or primary) position, and by having a linear (unbranched) hydrocarbon chain.

  8. McMurry reaction - Wikipedia

    en.wikipedia.org/wiki/McMurry_reaction

    This reductive coupling can be viewed as involving two steps. First is the formation of a pinacolate (1,2-diolate) complex, a step which is equivalent to the pinacol coupling reaction. The second step is the deoxygenation of the pinacolate, which yields the alkene, this second step exploits the oxophilicity of titanium.

  9. Wittig reagents - Wikipedia

    en.wikipedia.org/wiki/Wittig_reagents

    The alkylphosphonium salt is deprotonated with a strong base such as n-butyllithium: [Ph 3 P + CH 2 R]X − + C 4 H 9 Li → Ph 3 P=CHR + LiX + C 4 H 10. Besides n-butyllithium (n BuLi), other strong bases like sodium and potassium t-butoxide (t BuONa, t BuOK), lithium, sodium and potassium hexamethyldisilazide (LiHMDS, NaHMDS, KHDMS, where HDMS = N(SiMe 3) 2), or sodium hydride (NaH) are also ...