Search results
Results from the WOW.Com Content Network
In Euclidean geometry, the AA postulate states that two triangles are similar if they have two corresponding angles congruent. The AA postulate follows from the fact that the sum of the interior angles of a triangle is always equal to 180°. By knowing two angles, such as 32° and 64° degrees, we know that the next angle is 84°, because 180 ...
English: Simplified version of similar triangles proof for Pythagoras' theorem. In triangle ACB, angle ACB is the right angle. CH is a perpendicular on hypotenuse AB of triangle ACB. In triangle AHC and triangle ACB, ∠AHC=∠ACB as each is a right angle. ∠HAC=∠CAB as they are common angles at vertex A.
English: Similar triangles proof for Pythagoras' theorem. In triangle ACB, angle ACB is the right angle. CH is a perpendicular on hypotenuse AB of triangle ACB. In triangle AHC and triangle ACB, ∠AHC=∠ACB as each is a right angle. ∠HAC=∠CAB as they are common angles at vertex A. Thus triangle AHC is similar to triangle ACB by AA test.
There are several elementary results concerning similar triangles in Euclidean geometry: [9] Any two equilateral triangles are similar. Two triangles, both similar to a third triangle, are similar to each other (transitivity of similarity of triangles). Corresponding altitudes of similar triangles have the same ratio as the corresponding sides.
Area of triangle C = sum of areas of A and B. All three right triangles are similar, so all three areas are proportional to the side bordering the centre triangle. Hence, α(a2 + b2) = α c2, or dividing by α, we have Pythagoras' theorem.
The principle of operation of such a scale hypsometer is based on the idea of similar triangles in geometry. First the adjustable vertical scale is set at a suitable height. Then as in step 1 in the illustration, a sighting is taken on the top of the object whose height is to be determined, and the reading on the horizontal scale, h', recorded.
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
A triangle with sides a, b, and c. In geometry, Heron's formula (or Hero's formula) gives the area of a triangle in terms of the three side lengths , , . Letting be the semiperimeter of the triangle, = (+ +), the area is [1]