Search results
Results from the WOW.Com Content Network
In informal contexts, the notation {f = g} is common. The definition above used two functions f and g, but there is no need to restrict to only two functions, or even to only finitely many functions. In general, if F is a set of functions from X to Y, then the equaliser of the members of F is the set of elements x of X such that, given any two ...
The roots of the quadratic function y = 1 / 2 x 2 − 3x + 5 / 2 are the places where the graph intersects the x-axis, the values x = 1 and x = 5. They can be found via the quadratic formula. In elementary algebra, the quadratic formula is a closed-form expression describing the solutions of a quadratic equation.
In mathematics, a quadratic function of a single variable is a function of the form [1] = + +,,where is its variable, and , , and are coefficients.The expression + + , especially when treated as an object in itself rather than as a function, is a quadratic polynomial, a polynomial of degree two.
For example, let f(x) = x 2 and g(x) = x + 1, then (()) = + and (()) = (+) agree just for = The function composition is associative in the sense that, if one of ( h ∘ g ) ∘ f {\displaystyle (h\circ g)\circ f} and h ∘ ( g ∘ f ) {\displaystyle h\circ (g\circ f)} is defined, then the other is also defined, and they are equal, that is, ( h ...
Therefore, if such a function f is measurable, so is its absolute value | f |, being the sum of two measurable functions. The converse, though, does not necessarily hold: for example, taking f as f = 1 V − 1 2 , {\displaystyle f=1_{V}-{\frac {1}{2}},} where V is a Vitali set , it is clear that f is not measurable, but its absolute value is ...
If f and g are real-valued (or complex-valued) functions, then taking the limit of an operation on f(x) and g(x) (e.g., f + g, f − g, f × g, f / g, f g) under certain conditions is compatible with the operation of limits of f(x) and g(x). This fact is often called the algebraic limit theorem. The main condition needed to apply the following ...
If f is defined on the real numbers, it corresponds, in graphical terms, to a curve in the Euclidean plane, and each fixed-point c corresponds to an intersection of the curve with the line y = x, cf. picture. For example, if f is defined on the real numbers by = +, then 2 is a fixed point of f, because f(2) = 2.
The second derivative of a function f can be used to determine the concavity of the graph of f. [2] A function whose second derivative is positive is said to be concave up (also referred to as convex), meaning that the tangent line near the point where it touches the function will lie below the graph of the function.