Search results
Results from the WOW.Com Content Network
A primitive Pythagorean triple is one in which a, b and c are coprime (that is, they have no common divisor larger than 1). [1] For example, (3, 4, 5) is a primitive Pythagorean triple whereas (6, 8, 10) is not. Every Pythagorean triple can be scaled to a unique primitive Pythagorean triple by dividing (a, b, c) by their greatest common divisor ...
If a right triangle has integer side lengths a, b, c (necessarily satisfying the Pythagorean theorem a 2 + b 2 = c 2), then (a,b,c) is known as a Pythagorean triple. As Martin (1875) describes, the Pell numbers can be used to form Pythagorean triples in which a and b are one unit apart, corresponding to right triangles that are nearly isosceles ...
Primitive Pythagorean triple a, b, and c are also pairwise coprime. The set of all primitive Pythagorean triples has the structure of a rooted tree, specifically a ternary tree, in a natural way. This was first discovered by B. Berggren in 1934. [1] F. J. M. Barning showed [2] that when any of the three matrices
A Pythagorean triple has three positive integers a, b, and c, such that a 2 + b 2 = c 2. In other words, a Pythagorean triple represents the lengths of the sides of a right triangle where all three sides have integer lengths. [1] Such a triple is commonly written (a, b, c). Some well-known examples are (3, 4, 5) and (5, 12, 13).
Wade and Wade [17] first introduced the categorization of Pythagorean triples by their height, defined as c − b, linking 3,4,5 to 5,12,13 and 7,24,25 and so on. McCullough and Wade [18] extended this approach, which produces all Pythagorean triples when k > h √ 2 /d: Write a positive integer h as pq 2 with p square-free and q positive.
The number of integer triangles (up to congruence) with given largest side c and integer triple (,,) is the number of integer triples such that + > and . This is the integer value ⌈ (+) ⌉ ⌊ (+) ⌋. [3] Alternatively, for c even it is the double triangular number (+) and for c odd it is the square (+).
There are infinitely many such triples, [19] and methods for generating such triples have been studied in many cultures, beginning with the Babylonians [20] and later ancient Greek, Chinese, and Indian mathematicians. [1] Mathematically, the definition of a Pythagorean triple is a set of three integers (a, b, c) that satisfy the equation [21] a ...
Although its name is recent, the silver ratio (or silver mean) has been studied since ancient times because of its connections to the square root of 2, almost-isosceles Pythagorean triples, square triangular numbers, Pell numbers, the octagon, and six polyhedra with octahedral symmetry. Silver rectangle in a regular octagon.