enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Bailey–Borwein–Plouffe formula - Wikipedia

    en.wikipedia.org/wiki/Bailey–Borwein–Plouffe...

    This does not compute the nth decimal digit of π (i.e., in base 10). [3] But another formula discovered by Plouffe in 2022 allows extracting the nth digit of π in decimal. [4] BBP and BBP-inspired algorithms have been used in projects such as PiHex [5] for calculating many digits of π using distributed computing. The existence of this ...

  3. Bellard's formula - Wikipedia

    en.wikipedia.org/wiki/Bellard's_formula

    Bellard's formula is used to calculate the nth digit of π in base 16. Bellard's formula was discovered by Fabrice Bellard in 1997. It is about 43% faster than the Bailey–Borwein–Plouffe formula (discovered in 1995). [1] [2] It has been used in PiHex, the now-completed distributed computing project.

  4. Leibniz formula for π - Wikipedia

    en.wikipedia.org/wiki/Leibniz_formula_for_π

    The formula is a special case of the Euler–Boole summation formula for alternating series, providing yet another example of a convergence acceleration technique that can be applied to the Leibniz series. In 1992, Jonathan Borwein and Mark Limber used the first thousand Euler numbers to calculate π to 5,263 decimal places with the Leibniz ...

  5. The digits of pi extend into infinity, and pi is itself an irrational number, meaning it can’t be truly represented by an integer fraction (the one we often learn in school, 22/7, is not very ...

  6. Pi - Wikipedia

    en.wikipedia.org/wiki/Pi

    In 1844, a record was set by Zacharias Dase, who employed a Machin-like formula to calculate 200 decimals of π in his head at the behest of German mathematician Carl Friedrich Gauss. [88] In 1853, British mathematician William Shanks calculated π to 607 digits, but made a mistake in the 528th digit, rendering all subsequent digits incorrect ...

  7. Chudnovsky algorithm - Wikipedia

    en.wikipedia.org/wiki/Chudnovsky_algorithm

    The Chudnovsky algorithm is a fast method for calculating the digits of π, based on Ramanujan's π formulae.Published by the Chudnovsky brothers in 1988, [1] it was used to calculate π to a billion decimal places.

  8. List of formulae involving π - Wikipedia

    en.wikipedia.org/wiki/List_of_formulae_involving_π

    Perhaps the most notable hypergeometric inversions are the following two examples, involving the Ramanujan tau function and the Fourier coefficients of the J-invariant (OEIS: A000521): ∑ n = − 1 ∞ j n q n = 256 ( 1 − z + z 2 ) 3 z 2 ( 1 − z ) 2 , {\displaystyle \sum _{n=-1}^{\infty }\mathrm {j} _{n}q^{n}=256{\dfrac {(1-z+z^{2})^{3}}{z ...

  9. Simon Plouffe - Wikipedia

    en.wikipedia.org/wiki/Simon_Plouffe

    Simon Plouffe (born June 11, 1956) is a French Canadian mathematician who discovered the Bailey–Borwein–Plouffe formula (BBP algorithm) which permits the computation of the nth binary digit of π, in 1995. [1] [2] [3] His other 2022 formula allows extracting the nth digit of π in decimal. [4] He was born in Saint-Jovite, Quebec.