enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Nuclear magnetic resonance spectroscopy - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    A 900 MHz NMR instrument with a 21.1 T magnet at HWB-NMR, Birmingham, UK. Nuclear magnetic resonance spectroscopy, most commonly known as NMR spectroscopy or magnetic resonance spectroscopy (MRS), is a spectroscopic technique based on re-orientation of atomic nuclei with non-zero nuclear spins in an external magnetic field.

  3. Nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance

    Bruker 700 MHz nuclear magnetic resonance (NMR) spectrometer. Nuclear Magnetic Resonance (NMR) basic principles. Nuclear magnetic resonance (NMR) is a physical phenomenon in which nuclei in a strong constant magnetic field are disturbed by a weak oscillating magnetic field (in the near field [1]) and respond by producing an electromagnetic signal with a frequency characteristic of the magnetic ...

  4. Two-dimensional nuclear magnetic resonance spectroscopy

    en.wikipedia.org/wiki/Two-dimensional_nuclear...

    Two-Dimensional Nuclear Magnetic Resonance (2D NMR) is an advanced spectroscopic technique that builds upon the capabilities of one-dimensional (1D) NMR by incorporating an additional frequency dimension. This extension allows for a more comprehensive analysis of molecular structures. [1]

  5. Proton nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Proton_nuclear_magnetic...

    The analysis of such multiplets (which can be much more complicated than the ones shown here) provides important clues to the structure of the molecule being studied. The simple rules for the spin-spin splitting of NMR signals described above apply only if the chemical shifts of the coupling partners are substantially larger than the coupling ...

  6. Nuclear magnetic resonance spectroscopy of proteins - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Structure determination by NMR has traditionally been a time-consuming process, requiring interactive analysis of the data by a highly trained scientist. There has been considerable interest in automating the process to increase the throughput of structure determination and to make protein NMR accessible to non-experts (See structural genomics ...

  7. Karplus equation - Wikipedia

    en.wikipedia.org/wiki/Karplus_equation

    Graph of the Karplus relation J HH (φ) = 12 cos ^2 φ - cosφ+2 obtained for ethane derivatives [1]. The Karplus equation, named after Martin Karplus, describes the correlation between 3 J-coupling constants and dihedral torsion angles in nuclear magnetic resonance spectroscopy: [2]

  8. Nuclear magnetic resonance crystallography - Wikipedia

    en.wikipedia.org/wiki/Nuclear_magnetic_resonance...

    Nuclear magnetic resonance crystallography (NMR crystallography) is a method which utilizes primarily NMR spectroscopy to determine the structure of solid materials on the atomic scale. Thus, solid-state NMR spectroscopy would be used primarily, possibly supplemented by quantum chemistry calculations (e.g. density functional theory ), [ 1 ...

  9. Phosphorus-31 nuclear magnetic resonance - Wikipedia

    en.wikipedia.org/wiki/Phosphorus-31_nuclear...

    Phosphorus-31 NMR spectroscopy is an analytical chemistry technique that uses nuclear magnetic resonance (NMR) to study chemical compounds that contain phosphorus. Phosphorus is commonly found in organic compounds and coordination complexes (as phosphines ), making it useful to measure 31 - NMR spectra routinely.