enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Fermat's theorem (stationary points) - Wikipedia

    en.wikipedia.org/wiki/Fermat's_theorem...

    Fermat's theorem is central to the calculus method of determining maxima and minima: in one dimension, one can find extrema by simply computing the stationary points (by computing the zeros of the derivative), the non-differentiable points, and the boundary points, and then investigating this set to determine the extrema.

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    In mathematical optimization, the method of Lagrange multipliers is a strategy for finding the local maxima and minima of a function subject to equation constraints (i.e., subject to the condition that one or more equations have to be satisfied exactly by the chosen values of the variables). [1]

  4. Lagrange multipliers on Banach spaces - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multipliers_on...

    Let X and Y be real Banach spaces.Let U be an open subset of X and let f : U → R be a continuously differentiable function.Let g : U → Y be another continuously differentiable function, the constraint: the objective is to find the extremal points (maxima or minima) of f subject to the constraint that g is zero.

  5. Big M method - Wikipedia

    en.wikipedia.org/wiki/Big_M_method

    However, to apply it, the origin (all variables equal to 0) must be a feasible point. This condition is satisfied only when all the constraints (except non-negativity) are less-than constraints and with positive constant on the right-hand side. The Big M method introduces surplus and artificial variables to convert all inequalities into that form.

  6. Constrained optimization - Wikipedia

    en.wikipedia.org/wiki/Constrained_optimization

    Alternatively, if the constraints are all equality constraints and are all linear, they can be solved for some of the variables in terms of the others, and the former can be substituted out of the objective function, leaving an unconstrained problem in a smaller number of variables.

  7. Karush–Kuhn–Tucker conditions - Wikipedia

    en.wikipedia.org/wiki/Karush–Kuhn–Tucker...

    Consider the following nonlinear optimization problem in standard form: . minimize () subject to (),() =where is the optimization variable chosen from a convex subset of , is the objective or utility function, (=, …,) are the inequality constraint functions and (=, …,) are the equality constraint functions.

  8. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  9. Mathematical optimization - Wikipedia

    en.wikipedia.org/wiki/Mathematical_optimization

    Mathematical optimization (alternatively spelled optimisation) or mathematical programming is the selection of a best element, with regard to some criteria, from some set of available alternatives. [1] [2] It is generally divided into two subfields: discrete optimization and continuous optimization.