Search results
Results from the WOW.Com Content Network
The Crab Pulsar, a neutron star 28–30 kilometres (17–19 mi) across with a spin rate of 30.2 times per second, lies at the center of the Crab Nebula. The star emits pulses of radiation from gamma rays to radio waves .
The Crab Nebula, and the Crab Pulsar within it, is an intense space X-ray source. It is used as a standard candle in the calibration procedure of X-ray instruments in space. However, because of the Crab Nebula's variable intensity at different X-ray energies, conversion of the Crab to another units depends on the X-ray energy range of interest.
Thomas Gold has shown that the pulsar's spin-down power is sufficient to power the Crab Nebula. A subsequent study by them, including William D. Brundage, also found that the NP 0532 source is located at the Crab Nebula. [20] A radio source was also reported coincident with the Crab Nebula in late 1968 by L. I. Matveenko in Soviet Astronomy. [21]
It spins at a rate of 30 times per second, spewing energy beams and taking on a decidedly pulsating appearance. NASA's Hubble captures stunning photos of the Crab Nebula's 'beating heart' Skip to ...
RT instability fingers evident in the Crab Nebula. The Rayleigh–Taylor instability, or RT instability (after Lord Rayleigh and G. I. Taylor), is an instability of an interface between two fluids of different densities which occurs when the lighter fluid is pushing the heavier fluid.
The Crab Nebula is a pulsar wind nebula associated with the 1054 supernova.It is located about 6,500 light-years from the Earth. [1]A near-Earth supernova is an explosion resulting from the death of a star that occurs close enough to the Earth (roughly less than 10 to 300 parsecs [30 to 1000 light-years] away [2]) to have noticeable effects on Earth's biosphere.
For premium support please call: 800-290-4726 more ways to reach us
Pulsed emission gamma-ray radiation from the Crab has recently been observed up to ≥25 GeV, [21] probably due to synchrotron emission by electrons trapped in the strong magnetic field around the pulsar. Polarization in the Crab nebula [22] at energies from 0.1 to 1.0 MeV, illustrates this typical property of synchrotron radiation.