Search results
Results from the WOW.Com Content Network
One must multiply the leftmost digit of the original number by 3, add the next digit, take the remainder when divided by 7, and continue from the beginning: multiply by 3, add the next digit, etc. For example, the number 371: 3×3 + 7 = 16 remainder 2, and 2×3 + 1 = 7. This method can be used to find the remainder of division by 7.
This can be read verbally as "a divided by b" or "a over b". In some non-English-speaking cultures [which?], "a divided by b" is written a : b. In English usage, the colon is restricted to the concept of ratios ("a is to b"). In an equation =, a is the dividend, b the divisor, and c the quotient.
Long division is the standard algorithm used for pen-and-paper division of multi-digit numbers expressed in decimal notation. It shifts gradually from the left to the right end of the dividend, subtracting the largest possible multiple of the divisor (at the digit level) at each stage; the multiples then become the digits of the quotient, and the final difference is then the remainder.
The remainder is multiplied by 3 to get feet and carried up to the feet column. Long division of the feet gives 1 remainder 29 which is then multiplied by twelve to get 348 inches. Long division continues with the final remainder of 15 inches being shown on the result line.
Sometimes this remainder is added to the quotient as a fractional part, so 10 / 3 is equal to 3 + 1 / 3 or 3.33..., but in the context of integer division, where numbers have no fractional part, the remainder is kept separately (or exceptionally, discarded or rounded). [5] When the remainder is kept as a fraction, it leads to a rational ...
In this case, s is called the least absolute remainder. [3] As with the quotient and remainder, k and s are uniquely determined, except in the case where d = 2n and s = ±n. For this exception, we have: a = kd + n = (k + 1)d − n. A unique remainder can be obtained in this case by some convention—such as always taking the positive value of s.
"In arithmetic, the remainder (or modulus) is the amount "left over" after performing the division of two integers which do not divide evenly, that is, where the result of the division cannot be expressed as an integer." does not seem quite right since the remainder could be zero: 8/2 is an integer, 8 divided by 2 has remainder 0.
In computing, the modulo operation returns the remainder or signed remainder of a division, after one number is divided by another, called the modulus of the operation. Given two positive numbers a and n, a modulo n (often abbreviated as a mod n) is the remainder of the Euclidean division of a by n, where a is the dividend and n is the divisor. [1]