Search results
Results from the WOW.Com Content Network
A common misconception occurs between centre of mass and centre of gravity.They are defined in similar ways but are not exactly the same quantity. Centre of mass is the mathematical description of placing all the mass in the region considered to one position, centre of gravity is a real physical quantity, the point of a body where the gravitational force acts.
The agreed-upon value for standard gravity is 9.80665 m/s 2 (32.1740 ft/s 2) by definition. [4] This quantity is denoted variously as g n, g e (though this sometimes means the normal gravity at the equator, 9.7803267715 m/s 2 (32.087686258 ft/s 2)), [5] g 0, or simply g (which is also used for the variable local value).
In physics, gravity (from Latin gravitas 'weight' [1]) is a fundamental interaction primarily observed as mutual attraction between all things that have mass.Gravity is, by far, the weakest of the four fundamental interactions, approximately 10 38 times weaker than the strong interaction, 10 36 times weaker than the electromagnetic force and 10 29 times weaker than the weak interaction.
It is a constant defined by standard as 9.806 65 m/s 2 (about 32.174 05 ft/s 2). This value was established by the third General Conference on Weights and Measures (1901, CR 70) and used to define the standard weight of an object as the product of its mass and this nominal acceleration .
A set of equations describing the trajectories of objects subject to a constant gravitational force under normal Earth-bound conditions.Assuming constant acceleration g due to Earth's gravity, Newton's law of universal gravitation simplifies to F = mg, where F is the force exerted on a mass m by the Earth's gravitational field of strength g.
At a fixed point on the surface, the magnitude of Earth's gravity results from combined effect of gravitation and the centrifugal force from Earth's rotation. [2] [3] At different points on Earth's surface, the free fall acceleration ranges from 9.764 to 9.834 m/s 2 (32.03 to 32.26 ft/s 2), [4] depending on altitude, latitude, and longitude.
General relativity is a theory of gravitation developed by Albert Einstein between 1907 and 1915. The theory of general relativity says that the observed gravitational effect between masses results from their warping of spacetime.
[7] [8] [9] The Watt–Misner theory (1999) is a recent example of a scalar theory of gravitation. It is not intended as a viable theory of gravitation (since, as Watt and Misner point out, it is not consistent with observation), but as a toy theory which can be useful in testing numerical relativity schemes. It also has pedagogical value. [10]