Search results
Results from the WOW.Com Content Network
Python uses the following syntax to express list comprehensions over finite lists: S = [ 2 * x for x in range ( 100 ) if x ** 2 > 3 ] A generator expression may be used in Python versions >= 2.4 which gives lazy evaluation over its input, and can be used with generators to iterate over 'infinite' input such as the count generator function which ...
The form for (;;) for an infinite loop is traditional, appearing in the standard reference The C Programming Language, and is often punningly pronounced "forever". [11] This is a loop that will print "Infinite Loop" without halting. A similar example in 1980s-era BASIC:
When eager evaluation is desirable (primarily when the sequence is finite, as otherwise evaluation will never terminate), one can either convert to a list, or use a parallel construction that creates a list instead of a generator. For example, in Python a generator g can be evaluated to a list l via l = list(g), while in F# the sequence ...
If while is omitted, we get an infinite loop. The construction here can be thought of as a do loop with the while check in the middle. Hence this single construction can replace several constructions in most programming languages. Languages lacking this construct generally emulate it using an equivalent infinite-loop-with-break idiom:
If the loop is checking something simple then it will spend most of its time asleep and will waste very little CPU time. In programs that never end (such as operating systems), infinite busy waiting can be implemented by using unconditional jumps as shown by this NASM syntax: jmp $. The CPU will unconditionally jump to its own position forever ...
A conditional loop has the potential to become an infinite loop when nothing in the loop's body can affect the outcome of the loop's conditional statement. However, infinite loops can sometimes be used purposely, often with an exit from the loop built into the loop implementation for every computer language , but many share the same basic ...
After completing all the statements in the loop body, the condition, (x < 5), is checked again, and the loop is executed again, this process repeating until the variable x has the value 5. It is possible, and in some cases desirable, for the condition to always evaluate to true, creating an infinite loop.
Here the loop condition is defined using some value UNKNOWN, where the value of UNKNOWN is not known (e.g. defined by the user's input when the program is executed). Here the termination analysis must take into account all possible values of UNKNOWN and find out that in the possible case of UNKNOWN = 0 (as in the original example) the ...