enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Equivalent radius - Wikipedia

    en.wikipedia.org/wiki/Equivalent_radius

    Measurement of tree circumference, the tape calibrated to show diameter, at breast height. The tape assumes a circular shape. The perimeter of a circle of radius R is .Given the perimeter of a non-circular object P, one can calculate its perimeter-equivalent radius by setting

  3. Measurement of a Circle - Wikipedia

    en.wikipedia.org/wiki/Measurement_of_a_Circle

    A page from Archimedes' Measurement of a Circle. Measurement of a Circle or Dimension of the Circle (Greek: Κύκλου μέτρησις, Kuklou metrēsis) [1] is a treatise that consists of three propositions, probably made by Archimedes, ca. 250 BCE. [2] [3] The treatise is only a fraction of what was a longer work. [4] [5]

  4. Area of a circle - Wikipedia

    en.wikipedia.org/wiki/Area_of_a_circle

    Following Archimedes' argument in The Measurement of a Circle (c. 260 BCE), compare the area enclosed by a circle to a right triangle whose base has the length of the circle's circumference and whose height equals the circle's radius. If the area of the circle is not equal to that of the triangle, then it must be either greater or less.

  5. Quadratrix of Hippias - Wikipedia

    en.wikipedia.org/wiki/Quadratrix_of_Hippias

    It lets one turn a quarter circle into square of the same area, hence a square with twice the side length has the same area as the full circle. According to Dinostratus' theorem the quadratrix divides one of the sides of the associated square in a ratio of 2 π {\displaystyle {\tfrac {2}{\pi }}} . [ 1 ]

  6. Circle packing - Wikipedia

    en.wikipedia.org/wiki/Circle_packing

    The most efficient way to pack different-sized circles together is not obvious. In geometry, circle packing is the study of the arrangement of circles (of equal or varying sizes) on a given surface such that no overlapping occurs and so that no circle can be enlarged without creating an overlap.

  7. Lune of Hippocrates - Wikipedia

    en.wikipedia.org/wiki/Lune_of_Hippocrates

    Hippocrates wanted to solve the classic problem of squaring the circle, i.e. constructing a square by means of straightedge and compass, having the same area as a given circle. [2] [3] He proved that the lune bounded by the arcs labeled E and F in the figure has the same area as triangle ABO. This afforded some hope of solving the circle ...

  8. Circle packing in a square - Wikipedia

    en.wikipedia.org/wiki/Circle_packing_in_a_square

    Circle packing in a square is a packing problem in recreational mathematics, where the aim is to pack n unit circles into the smallest possible square. Equivalently, the problem is to arrange n points in a unit square aiming to get the greatest minimal separation, d n , between points. [ 1 ]

  9. On the Sphere and Cylinder - Wikipedia

    en.wikipedia.org/wiki/On_the_Sphere_and_Cylinder

    In his work, Archimedes showed that the surface area of a cylinder is equal to: = + = (+). and that the volume of the same is: =. [3] On the sphere, he showed that the surface area is four times the area of its great circle. In modern terms, this means that the surface area is equal to: