enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Category:Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Category:Error_detection...

    Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file

  3. Error detection and correction - Wikipedia

    en.wikipedia.org/wiki/Error_detection_and_correction

    The on-line textbook: Information Theory, Inference, and Learning Algorithms, by David J.C. MacKay, contains chapters on elementary error-correcting codes; on the theoretical limits of error-correction; and on the latest state-of-the-art error-correcting codes, including low-density parity-check codes, turbo codes, and fountain codes.

  4. Error correction code - Wikipedia

    en.wikipedia.org/wiki/Error_correction_code

    Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.

  5. Block code - Wikipedia

    en.wikipedia.org/wiki/Block_code

    The rate of a block code is defined as the ratio between its message length and its block length: = /. A large rate means that the amount of actual message per transmitted block is high.

  6. Locally recoverable code - Wikipedia

    en.wikipedia.org/wiki/Locally_recoverable_code

    • Length. The length is the number of evaluation points. Because the sets are disjoint for {, …,}, the length of the code is | | = (+). • Dimension. The dimension of the code is (+), for ≤ , as each has degree at most ⁡ (()), covering a vector space of dimension ⁡ (()) =, and by the construction of , there are + distinct .

  7. Hamming code - Wikipedia

    en.wikipedia.org/wiki/Hamming_code

    As explained earlier, it can either detect and correct single-bit errors or it can detect (but not correct) both single and double-bit errors. With the addition of an overall parity bit, it becomes the [8,4] extended Hamming code and can both detect and correct single-bit errors and detect (but not correct) double-bit errors.

  8. Hamming (7,4) - Wikipedia

    en.wikipedia.org/wiki/Hamming(7,4)

    Since the source is only 4 bits then there are only 16 possible transmitted words. Included is the eight-bit value if an extra parity bit is used (see Hamming(7,4) code with an additional parity bit).

  9. Burst error-correcting code - Wikipedia

    en.wikipedia.org/wiki/Burst_error-correcting_code

    Proof. We need to prove that if you add a burst of length to a codeword (i.e. to a polynomial that is divisible by ()), then the result is not going to be a codeword (i.e. the corresponding polynomial is not divisible by ()).