Search results
Results from the WOW.Com Content Network
All error-detection and correction schemes add some redundancy (i.e., some extra data) to a message, which receivers can use to check consistency of the delivered message and to recover data that has been determined to be corrupted.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
Low-density parity-check (LDPC) codes are a class of highly efficient linear block codes made from many single parity check (SPC) codes. They can provide performance very close to the channel capacity (the theoretical maximum) using an iterated soft-decision decoding approach, at linear time complexity in terms of their block length.
Cyclic codes are not only simple to implement but have the benefit of being particularly well suited for the detection of burst errors: contiguous sequences of erroneous data symbols in messages. This is important because burst errors are common transmission errors in many communication channels, including magnetic and optical storage devices.
• Length. The length is the number of evaluation points. Because the sets are disjoint for {, …,}, the length of the code is | | = (+). • Dimension. The dimension of the code is (+), for ≤ , as each has degree at most (()), covering a vector space of dimension (()) =, and by the construction of , there are + distinct .
The errors caused by these phenomena are called soft errors. This can be a problem for DRAM- and SRAM-based memories. Memory scrubbing does error-detection and correction of bit errors in computer RAM by using ECC memory, other copies of the data, or other error-correction codes.
This system detects all single-digit errors and around 90% [citation needed] of transposition errors. 1, 3, 7, and 9 are used because they are coprime with 10, so changing any digit changes the check digit; using a coefficient that is divisible by 2 or 5 would lose information (because 5×0 = 5×2 = 5×4 = 5×6 = 5×8 = 0 modulo 10) and thus ...
The rate of a block code is defined as the ratio between its message length and its block length: = /. A large rate means that the amount of actual message per transmitted block is high.