enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Sample size determination - Wikipedia

    en.wikipedia.org/wiki/Sample_size_determination

    The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]

  3. Grubbs's test - Wikipedia

    en.wikipedia.org/wiki/Grubbs's_test

    However, multiple iterations change the probabilities of detection, and the test should not be used for sample sizes of six or fewer since it frequently tags most of the points as outliers. [3] Grubbs's test is defined for the following hypotheses: H 0: There are no outliers in the data set H a: There is exactly one outlier in the data set

  4. Sampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Sampling_(statistics)

    Formulas, tables, and power function charts are well known approaches to determine sample size. Steps for using sample size tables: Postulate the effect size of interest, α, and β. Check sample size table [20] Select the table corresponding to the selected α; Locate the row corresponding to the desired power; Locate the column corresponding ...

  5. Imputation (statistics) - Wikipedia

    en.wikipedia.org/wiki/Imputation_(statistics)

    If the data are missing completely at random, then listwise deletion does not add any bias, but it does decrease the power of the analysis by decreasing the effective sample size. For example, if 1000 cases are collected but 80 have missing values, the effective sample size after listwise deletion is 920.

  6. Fisher's exact test - Wikipedia

    en.wikipedia.org/wiki/Fisher's_exact_test

    Fisher's exact test is a statistical significance test used in the analysis of contingency tables. [1] [2] [3] Although in practice it is employed when sample sizes are small, it is valid for all sample sizes.

  7. Resampling (statistics) - Wikipedia

    en.wikipedia.org/wiki/Resampling_(statistics)

    the resample size is smaller than the sample size and; resampling is done without replacement. The advantage of subsampling is that it is valid under much weaker conditions compared to the bootstrap. In particular, a set of sufficient conditions is that the rate of convergence of the estimator is known and that the limiting distribution is ...

  8. Goodness of fit - Wikipedia

    en.wikipedia.org/wiki/Goodness_of_fit

    N = the sample size The resulting value can be compared with a chi-square distribution to determine the goodness of fit. The chi-square distribution has ( k − c ) degrees of freedom , where k is the number of non-empty bins and c is the number of estimated parameters (including location and scale parameters and shape parameters) for the ...

  9. Blocking (statistics) - Wikipedia

    en.wikipedia.org/wiki/Blocking_(statistics)

    Blocking involves grouping experimental units based on levels of the nuisance variable to control for its influence. Randomization helps distribute the effects of nuisance variables evenly across treatment groups.