Search results
Results from the WOW.Com Content Network
Photosynthesis (/ ˌ f oʊ t ə ˈ s ɪ n θ ə s ɪ s / FOH-tə-SINTH-ə-sis) [1] is a system of biological processes by which photosynthetic organisms, such as most plants, algae, and cyanobacteria, convert light energy, typically from sunlight, into the chemical energy necessary to fuel their metabolism.
In actuality, however, plants do not absorb all incoming sunlight (due to reflection, respiration requirements of photosynthesis and the need for optimal solar radiation levels) and do not convert all harvested energy into biomass, which results in a maximum overall photosynthetic efficiency of 3 to 6% of total solar radiation. [1]
For the Calvin cycle to continue, RuBP (ribulose 1,5-bisphosphate) must be regenerated. So, 5 out of 6 carbons from the 2 G3P molecules are used for this purpose. Therefore, there is only 1 net carbon produced to play with for each turn. To create 1 surplus G3P requires 3 carbons, and therefore 3 turns of the Calvin cycle.
Plants can only use a fraction (approximately 1%) of this energy for photosynthesis. [11] The process of photosynthesis splits a water molecule (H 2 O), releasing oxygen (O 2) into the atmosphere, and reducing carbon dioxide (CO 2) to release the hydrogen atoms that fuel the metabolic process of primary production.
The first ideas about light being used in photosynthesis were proposed by Jan IngenHousz in 1779 [9] who recognized it was sunlight falling on plants that was required, although Joseph Priestley had noted the production of oxygen without the association with light in 1772. [10]
These organisms perform photosynthesis through organelles called chloroplasts and are believed to have originated about 2 billion years ago. [1] Comparing the genes of chloroplast and cyanobacteria strongly suggests that chloroplasts evolved as a result of endosymbiosis with cyanobacteria that gradually lost the genes required to be free-living.
[1] Each photosystem has two parts: a reaction center, where the photochemistry occurs, ... Both photosystem I and II are required for oxygenic photosynthesis.
[1] C 4 fixation is an addition to the ancestral and more common C 3 carbon fixation. The main carboxylating enzyme in C 3 photosynthesis is called RuBisCO, which catalyses two distinct reactions using either CO 2 (carboxylation) or oxygen (oxygenation) as a substrate.