Search results
Results from the WOW.Com Content Network
In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
Row echelon form — a matrix in this form is the result of applying the forward elimination procedure to a matrix (as used in Gaussian elimination). Wronskian — the determinant of a matrix of functions and their derivatives such that row n is the (n−1) th derivative of row one.
Duplication, or doubling, multiplication by 2; Duplication matrix, a linear transformation dealing with half-vectorization; Doubling the cube, a problem in geometry also known as duplication of the cube; A type of multiplication theorem called the Legendre duplication formula or simply "duplication formula"
In this one-compartment model, the most common model of elimination is first order kinetics, where the elimination of the drug is directly proportional to the drug's concentration in the organism. This is often called linear pharmacokinetics , as the change in concentration over time can be expressed as a linear differential equation d C d t ...
If Gaussian elimination applied to a square matrix A produces a row echelon matrix B, let d be the product of the scalars by which the determinant has been multiplied, using the above rules. Then the determinant of A is the quotient by d of the product of the elements of the diagonal of B : det ( A ) = ∏ diag ( B ) d . {\displaystyle \det ...
FSU baseball vs. North Carolina prediction in NCAA College World Series bracket FSU 9 UNC 5: Game 5 will decide which ACC team will hot at-bat at the right time.
The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the i th position, where it is m.