Search results
Results from the WOW.Com Content Network
In mathematics, especially in linear algebra and matrix theory, the duplication matrix and the elimination matrix are linear transformations used for transforming half-vectorizations of matrices into vectorizations or (respectively) vice versa.
The matrix of domination or matrix of oppression is a sociological paradigm that explains issues of oppression that deal with race, class, and gender, which, though recognized as different social classifications, are all interconnected.
For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal.
Row echelon form — a matrix in this form is the result of applying the forward elimination procedure to a matrix (as used in Gaussian elimination). Wronskian — the determinant of a matrix of functions and their derivatives such that row n is the ( n −1) th derivative of row one.
The matrix () is the matrix in which the elements below the main diagonal have already been eliminated to 0 through Gaussian elimination for the first columns. Below is a matrix to observe to help us remember the notation (where each ∗ {\displaystyle *} represents any real number in the matrix):
Duplication, or doubling, multiplication by 2; Duplication matrix, a linear transformation dealing with half-vectorization; Doubling the cube, a problem in geometry also known as duplication of the cube; A type of multiplication theorem called the Legendre duplication formula or simply "duplication formula"
Capital accumulation: production for profit and accumulation as the implicit purpose of all or most of production, constriction or elimination of production formerly carried out on a common social or private household basis. Commodity production: production for exchange on a market; to maximize exchange-value instead of use-value.
The next type of row operation on a matrix A multiplies all elements on row i by m where m is a non-zero scalar (usually a real number). The corresponding elementary matrix is a diagonal matrix, with diagonal entries 1 everywhere except in the i th position, where it is m.