Search results
Results from the WOW.Com Content Network
‡ Second column of table indicates solubility at each given temperature in volume of CO 2 as it would be measured at 101.3 kPa and 0 °C per volume of water. The solubility is given for "pure water", i.e., water which contain only CO 2. This water is going to be acidic. For example, at 25 °C the pH of 3.9 is expected (see carbonic acid).
Note that for different gasses, the value of H n differs, according to the molar mass M: It is 10.9 for nitrogen, 9.2 for oxygen and 6.3 for carbon dioxide. The theoretical value for water vapor is 19.6, but due to vapor condensation the water vapor density dependence is highly variable and is not well approximated by this formula.
As another example, a regulation might limit the concentration of particulate matter to 0.1 grain per standard cubic foot (i.e., scf) of dry exhaust gas corrected to 12 volume percent CO 2. Environmental agencies in the USA often denote a standard cubic foot of dry gas as "dscf" or as "scfd".
Carbon dioxide: 3.640 0.04267 Carbon disulfide: 11.77 0.07685 Carbon monoxide: 1.505 0.0398500 Carbon tetrachloride: 19.7483 ... Water: 5.536 0.03049 Xenon: 4.250 0.05105
= milligrams of pollutant per cubic meter of air at sea level atmospheric pressure and T: ppmv = air pollutant concentration, in parts per million by volume T = ambient temperature in K = 273. + °C 0.082057338 = Universal gas constant in L atm mol −1 K −1: M = molecular mass (or molecular weight) of the air pollutant
The gaseous state of water is lighter than air (density 0.804 g/L at STP, average molecular mass 18.015 g/mol) due to water's low molar mass when compared with typical atmospheric gases such as nitrogen gas (N 2). It is non-flammable and much cheaper than helium. The concept of using steam for lifting is therefore already 200 years old.
The specific weight, also known as the unit weight (symbol γ, the Greek letter gamma), is a volume-specific quantity defined as the weight W divided by the volume V of a material: = / Equivalently, it may also be formulated as the product of density, ρ, and gravity acceleration, g: = Its unit of measurement in the International System of Units (SI) is newton per cubic metre (N/m 3), with ...
Note that the especially high molar values, as for paraffin, gasoline, water and ammonia, result from calculating specific heats in terms of moles of molecules. If specific heat is expressed per mole of atoms for these substances, none of the constant-volume values exceed, to any large extent, the theoretical Dulong–Petit limit of 25 J⋅mol ...