enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Lyapunov equation - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_equation

    The Lyapunov equation, named after the Russian mathematician Aleksandr Lyapunov, is a matrix equation used in the stability analysis of linear dynamical systems. [ 1 ] [ 2 ] In particular, the discrete-time Lyapunov equation (also known as Stein equation ) for X {\displaystyle X} is

  3. Lyapunov stability - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_stability

    The idea of Lyapunov stability can be extended to infinite-dimensional manifolds, where it is known as structural stability, which concerns the behavior of different but "nearby" solutions to differential equations. Input-to-state stability (ISS) applies Lyapunov notions to systems with inputs.

  4. Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Lyapunov_function

    In the theory of ordinary differential equations (ODEs), Lyapunov functions, named after Aleksandr Lyapunov, are scalar functions that may be used to prove the stability of an equilibrium of an ODE. Lyapunov functions (also called Lyapunov’s second method for stability) are important to stability theory of dynamical systems and control theory .

  5. Lyapunov–Malkin theorem - Wikipedia

    en.wikipedia.org/wiki/Lyapunov–Malkin_theorem

    where and are components of the system state, is a matrix that represents the linear dynamics of , and : and : represent higher-order nonlinear terms. If all eigenvalues of the matrix A {\displaystyle A} have negative real parts, and X ( x , y ), Y ( x , y ) vanish when x = 0, then the solution x = 0, y = 0 of this system is stable with respect ...

  6. Stability theory - Wikipedia

    en.wikipedia.org/wiki/Stability_theory

    In mathematics, stability theory addresses the stability of solutions of differential equations and of trajectories of dynamical systems under small perturbations of initial conditions. The heat equation , for example, is a stable partial differential equation because small perturbations of initial data lead to small variations in temperature ...

  7. Floquet theory - Wikipedia

    en.wikipedia.org/wiki/Floquet_theory

    The real parts of the Floquet exponents are called Lyapunov exponents. The zero solution is asymptotically stable if all Lyapunov exponents are negative, Lyapunov stable if the Lyapunov exponents are nonpositive and unstable otherwise. Floquet theory is very important for the study of dynamical systems, such as the Mathieu equation.

  8. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    The ordinary Lyapunov function is used to test whether a dynamical system is (Lyapunov) stable or (more restrictively) asymptotically stable. Lyapunov stability means that if the system starts in a state x ≠ 0 {\displaystyle x\neq 0} in some domain D , then the state will remain in D for all time.

  9. Kalman–Yakubovich–Popov lemma - Wikipedia

    en.wikipedia.org/wiki/Kalman–Yakubovich–Popov...

    It establishes a relation between a linear matrix inequality involving the state space constructs A, B, C and a condition in the frequency domain. The Kalman–Popov–Yakubovich lemma which was first formulated and proved in 1962 by Vladimir Andreevich Yakubovich [ 1 ] where it was stated that for the strict frequency inequality.