enow.com Web Search

  1. Ad

    related to: geometric sequence common ratio
  2. education.com has been visited by 100K+ users in the past month

    • Interactive Stories

      Enchant young learners with

      animated, educational stories.

    • Digital Games

      Turn study time into an adventure

      with fun challenges & characters.

Search results

  1. Results from the WOW.Com Content Network
  2. Geometric progression - Wikipedia

    en.wikipedia.org/wiki/Geometric_progression

    A geometric progression, also known as a geometric sequence, is a mathematical sequence of non-zero numbers where each term after the first is found by multiplying the previous one by a fixed number called the common ratio. For example, the sequence 2, 6, 18, 54, ... is a geometric progression with a common ratio of 3.

  3. Geometric series - Wikipedia

    en.wikipedia.org/wiki/Geometric_series

    The geometric series is an infinite series derived from a special type of sequence called a geometric progression.This means that it is the sum of infinitely many terms of geometric progression: starting from the initial term , and the next one being the initial term multiplied by a constant number known as the common ratio .

  4. 1/4 + 1/16 + 1/64 + 1/256 + ⋯ - ⋯ - Wikipedia

    en.wikipedia.org/wiki/1/4_%2B_1/16_%2B_1/64_%2B...

    Today, a more standard phrasing of Archimedes' proposition is that the partial sums of the series 1 + ⁠ 1 / 4 ⁠ + ⁠ 1 / 16 ⁠ + ⋯ are: + + + + = +. This form can be proved by multiplying both sides by 1 − ⁠ 1 / 4 ⁠ and observing that all but the first and the last of the terms on the left-hand side of the equation cancel in pairs.

  5. Series (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Series_(mathematics)

    In general, a geometric series with initial term and common ratio , =, converges if and only if | | <, in which case it converges to . The harmonic series is the series [ 40 ] 1 + 1 2 + 1 3 + 1 4 + 1 5 + ⋯ = ∑ n = 1 ∞ 1 n . {\displaystyle 1+{1 \over 2}+{1 \over 3}+{1 \over 4}+{1 \over 5}+\cdots =\sum _{n=1}^{\infty }{1 \over n}.}

  6. Arithmetico-geometric sequence - Wikipedia

    en.wikipedia.org/wiki/Arithmetico-geometric_sequence

    The elements of an arithmetico-geometric sequence () are the products of the elements of an arithmetic progression (in blue) with initial value and common difference , = + (), with the corresponding elements of a geometric progression (in green) with initial value and common ratio , =, so that [4]

  7. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    The Kepler triangle is a right triangle whose sides are in geometric progression. If the sides are formed from the geometric progression a, ar, ar 2 then its common ratio r is given by r = √ φ where φ is the golden ratio. Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up ...

  8. Divergent geometric series - Wikipedia

    en.wikipedia.org/wiki/Divergent_geometric_series

    It is useful to figure out which summation methods produce the geometric series formula for which common ratios. One application for this information is the so-called Borel-Okada principle: If a regular summation method assigns = to / for all in a subset of the complex plane, given certain restrictions on , then the method also gives the analytic continuation of any other function () = = on ...

  9. Ratio - Wikipedia

    en.wikipedia.org/wiki/Ratio

    Sequences that have the property that the ratios of consecutive terms are equal are called geometric progressions. Definitions 9 and 10 apply this, saying that if p, q and r are in proportion then p:r is the duplicate ratio of p:q and if p, q, r and s are in proportion then p:s is the triplicate ratio of p:q.

  1. Ad

    related to: geometric sequence common ratio