enow.com Web Search

Search results

  1. Results from the WOW.Com Content Network
  2. Black–Scholes model - Wikipedia

    en.wikipedia.org/wiki/BlackScholes_model

    The normality assumption of the Black–Scholes model does not capture extreme movements such as stock market crashes. The assumptions of the Black–Scholes model are not all empirically valid. The model is widely employed as a useful approximation to reality, but proper application requires understanding its limitations – blindly following ...

  3. Black–Scholes equation - Wikipedia

    en.wikipedia.org/wiki/BlackScholes_equation

    In mathematical finance, the Black–Scholes equation, also called the Black–Scholes–Merton equation, is a partial differential equation (PDE) governing the price evolution of derivatives under the Black–Scholes model. [1]

  4. Finite difference methods for option pricing - Wikipedia

    en.wikipedia.org/wiki/Finite_difference_methods...

    The approach arises since the evolution of the option value can be modelled via a partial differential equation (PDE), as a function of (at least) time and price of underlying; see for example the Black–Scholes PDE. Once in this form, a finite difference model can be derived, and the valuation obtained. [2]

  5. Stochastic volatility - Wikipedia

    en.wikipedia.org/wiki/Stochastic_volatility

    This basic model with constant volatility is the starting point for non-stochastic volatility models such as Black–Scholes model and Cox–Ross–Rubinstein model. For a stochastic volatility model, replace the constant volatility σ {\displaystyle \sigma } with a function ν t {\displaystyle \nu _{t}} that models the variance of S t ...

  6. Black model - Wikipedia

    en.wikipedia.org/wiki/Black_model

    The Black model (sometimes known as the Black-76 model) is a variant of the Black–Scholes option pricing model. Its primary applications are for pricing options on future contracts, bond options, interest rate cap and floors, and swaptions. It was first presented in a paper written by Fischer Black in 1976.

  7. Fundamental theorem of asset pricing - Wikipedia

    en.wikipedia.org/wiki/Fundamental_theorem_of...

    Though arbitrage opportunities do exist briefly in real life, it has been said that any sensible market model must avoid this type of profit. [2]: 5 The first theorem is important in that it ensures a fundamental property of market models. Completeness is a common property of market models (for instance the Black–Scholes model).

  8. Valuation of options - Wikipedia

    en.wikipedia.org/wiki/Valuation_of_options

    The valuation itself combines (1) a model of the behavior of the underlying price with (2) a mathematical method which returns the premium as a function of the assumed behavior. The models in (1) range from the (prototypical) Black–Scholes model for equities, to the Heath–Jarrow–Morton framework for interest rates, to the Heston model ...

  9. Black's approximation - Wikipedia

    en.wikipedia.org/wiki/Black's_approximation

    In finance, Black's approximation is an approximate method for computing the value of an American call option on a stock paying a single dividend. It was described by Fischer Black in 1975. [1] The Black–Scholes formula (hereinafter, "BS Formula") provides an explicit equation for the value of a call option on a non-dividend paying stock. In ...