Search results
Results from the WOW.Com Content Network
DNA sequencing is the process of determining the nucleic acid sequence – the order of nucleotides in DNA. It includes any method or technology that is used to determine the order of the four bases: adenine, guanine, cytosine, and thymine. The advent of rapid DNA sequencing methods has greatly accelerated biological and medical research and ...
Therefore, determining the sequence is useful in fundamental research into why and how organisms live, as well as in applied subjects. Because of the importance of DNA to living things, knowledge of a DNA sequence may be useful in practically any biological research. For example, in medicine it can be used to identify, diagnose and potentially ...
Determining the sequence is therefore useful in fundamental research into why and how organisms live, as well as in applied subjects. Because of the key importance DNA has to living things, knowledge of DNA sequences is useful in practically any area of biological research. For example, in medicine it can be used to identify, diagnose, and ...
For example, some proteins have parts of their surface that perfectly match the shape of another molecule, allowing the protein to bind to this molecule very tightly. Other proteins are enzymes, which are like tiny machines that alter other molecules. [7] The information in DNA is held in the sequence of the repeating units along the DNA chain. [8]
For example, only about 1.5% of the human genome consists of protein-coding exons, with over 50% of human DNA consisting of non-coding repetitive sequences. [98] The reasons for the presence of so much noncoding DNA in eukaryotic genomes and the extraordinary differences in genome size , or C-value , among species, represent a long-standing ...
This information specifies the sequence of the amino acids within proteins according to the genetic code. The code is read by copying stretches of DNA into the related nucleic acid RNA in a process called transcription. Within cells, DNA is organized into long sequences called chromosomes.
The presence of repeated sequence DNA makes it easier for areas of homology to align, thereby controlling when and where recombination occurs. In addition to playing an important role in recombination, tandem repeats also play important structural roles in the genome. For example, telomeres are composed mainly of tandem TTAGGG repeats. [15]
Human genomes include both protein-coding DNA sequences and various types of DNA that does not encode proteins. The latter is a diverse category that includes DNA coding for non-translated RNA, such as that for ribosomal RNA, transfer RNA, ribozymes, small nuclear RNAs, and several types of regulatory RNAs.