Search results
Results from the WOW.Com Content Network
Hameroff and Penrose contested the conclusion, considering that Reimers's microtubule model was oversimplified. [35] Hameroff then proposed that condensates in microtubules in one neuron can link with microtubule condensates in other neurons and glial cells via the gap junctions of electrical synapses.
He was the Mallinckrodt Professor of Physics at Harvard University and Adjunct Professor of Optical Sciences at the University of Arizona. Born in New York City, he was awarded one half of the 2005 Nobel Prize in Physics "for his contribution to the quantum theory of optical coherence ", with the other half shared by John L. Hall and Theodor W ...
In physics, coherence theory is the study of optical effects arising from partially coherent light and radio sources. Partially coherent sources are sources where the coherence time or coherence length are limited by bandwidth, by thermal noise, or by other effect. Many aspects of modern coherence theory are studied in quantum optics.
Quantum optical coherence tomography (Q-OCT) is an imaging technique that uses nonclassical (quantum) light sources to generate high-resolution images based on the Hong-Ou-Mandel effect (HOM). [1] Q-OCT is similar to conventional OCT but uses a fourth-order interferometer that incorporates two photodetectors rather than a second-order ...
The discovery of the Hanbury Brown and Twiss effect – correlation of light upon coincidence – triggered Glauber's creation [23] of uniquely quantum coherence analysis. Classical optical coherence becomes a classical limit for first-order quantum coherence; higher degree of coherence leads to many phenomena in quantum optics.
The theoretical explanation of the difference between the correlations of photon pairs in thermal and in laser beams was first given by Roy J. Glauber, who was awarded the 2005 Nobel Prize in Physics "for his contribution to the quantum theory of optical coherence". This result was met with much skepticism in the physics community.
Quantum optics is a branch of atomic, molecular, and optical physics and quantum chemistry dealing with how individual quanta of light, known as photons, interact with atoms and molecules. It includes the study of the particle-like properties of photons.
Moreover, quantum biology may use computations to model biological interactions in light of quantum mechanical effects. [3] Quantum biology is concerned with the influence of non-trivial quantum phenomena, [ 4 ] which can be explained by reducing the biological process to fundamental physics , although these effects are difficult to study and ...