Search results
Results from the WOW.Com Content Network
Since 1968 there is the Risch algorithm for determining indefinite integrals that can be expressed in term of elementary functions, typically using a computer algebra system. Integrals that cannot be expressed using elementary functions can be manipulated symbolically using general functions such as the Meijer G-function .
Indefinite integrals are antiderivative functions. A constant (the constant of integration) may be added to the right hand side of any of these formulas, but has been suppressed here in the interest of brevity.
There are many alternatives to the classical calculus of Newton and Leibniz; for example, each of the infinitely many non-Newtonian calculi. [1] Occasionally an alternative calculus is more suited than the classical calculus for expressing a given scientific or mathematical idea.
The following is a list of integrals (antiderivative functions) of rational functions. Any rational function can be integrated by partial fraction decomposition of the function into a sum of functions of the form:
The slope field of () = +, showing three of the infinitely many solutions that can be produced by varying the arbitrary constant c.. In calculus, an antiderivative, inverse derivative, primitive function, primitive integral or indefinite integral [Note 1] of a continuous function f is a differentiable function F whose derivative is equal to the original function f.
The following is a list of indefinite integrals (antiderivatives) of expressions involving the inverse hyperbolic functions. For a complete list of integral formulas, see lists of integrals . In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration .
the integral is called an indefinite integral, which represents a class of functions (the antiderivative) whose derivative is the integrand. [19] The fundamental theorem of calculus relates the evaluation of definite integrals to indefinite integrals. There are several extensions of the notation for integrals to encompass integration on ...
In the previous two integrals, n!! is the double factorial: for even n it is equal to the product of all even numbers from 2 to n, and for odd n it is the product of all odd numbers from 1 to n; additionally it is assumed that 0!! = (−1)!! = 1.