Search results
Results from the WOW.Com Content Network
The cardiac conduction system (CCS, also called the electrical conduction system of the heart) [1] transmits the signals generated by the sinoatrial node – the heart's pacemaker, to cause the heart muscle to contract, and pump blood through the body's circulatory system.
The atrioventricular node or AV node electrically connects the heart's atria and ventricles to coordinate beating in the top of the heart; it is part of the electrical conduction system of the heart. [1] The AV node lies at the lower back section of the interatrial septum near the opening of the coronary sinus, and conducts the normal ...
Find the Shortest Path: Use a shortest path algorithm (e.g., Dijkstra's algorithm, Bellman-Ford algorithm) to find the shortest path from the source node to the sink node in the residual graph. Augment the Flow: Find the minimum capacity along the shortest path. Increase the flow on the edges of the shortest path by this minimum capacity.
Dijkstra's algorithm finds the shortest path from a given source node to every other node. [7]: 196–206 It can be used to find the shortest path to a specific destination node, by terminating the algorithm after determining the shortest path to the destination node. For example, if the nodes of the graph represent cities, and the costs of ...
The sinoatrial node (also known as the sinuatrial node, SA node or sinus node) is an oval shaped region of special cardiac muscle in the upper back wall of the right atrium made up of cells known as pacemaker cells. The sinus node is approximately 15 mm long, 3 mm wide, and 1 mm thick, located directly below and to the side of the superior vena ...
In case of shortest paths random walks [4] is the total number of the shortest paths between all pairs of nodes that pass through the node . In fact the walker prefers the nodes with higher betweenness centrality which is defined as below:
A central problem in algorithmic graph theory is the shortest path problem. Hereby, the problem of finding the shortest path between every pair of nodes is known as all-pair-shortest-paths (APSP) problem. As sequential algorithms for this problem often yield long runtimes, parallelization has shown to be beneficial in this field. In this ...
Percolation centrality is defined for a given node, at a given time, as the proportion of ‘percolated paths’ that go through that node. A ‘percolated path’ is a shortest path between a pair of nodes, where the source node is percolated (e.g., infected). The target node can be percolated or non-percolated, or in a partially percolated state.