Search results
Results from the WOW.Com Content Network
In this situation it is generally uncommon to talk about half-life in the first place, but sometimes people will describe the decay in terms of its "first half-life", "second half-life", etc., where the first half-life is defined as the time required for decay from the initial value to 50%, the second half-life is from 50% to 25%, and so on.
The biological half-lives "alpha half-life" and "beta half-life" of a substance measure how quickly a substance is distributed and eliminated. Physical optics: The intensity of electromagnetic radiation such as light or X-rays or gamma rays in an absorbent medium, follows an exponential decrease with distance into the absorbing medium.
An effective half-life of the drug will involve a decay constant that represents the sum of the biological and physical decay constants, as in the formula: = + With the decay constant it is possible to calculate the effective half-life using the formula:
Absorption half-life 1 h, elimination half-life 12 h. Biological half-life ( elimination half-life , pharmacological half-life ) is the time taken for concentration of a biological substance (such as a medication ) to decrease from its maximum concentration ( C max ) to half of C max in the blood plasma .
Half-life has units of time, and the elimination rate constant has units of 1/time, e.g., per hour or per day. An equation can be used to forecast the concentration of a compound at any future time when the fractional degration rate and steady state concentration are known:
The above equation makes clear the relationship between mass removal and clearance. It states that (with a constant mass generation) the concentration and clearance vary inversely with one another. If applied to creatinine (i.e. creatinine clearance ), it follows from the equation that if the serum creatinine doubles the clearance halves and ...
Half-life T 1/2 is defined as ... to calculate the half-life of a radionuclide. Where decay constant λ is related to specific radioactivity a by the following equation:
As an extreme example, the half-life of the isotope bismuth-209 is 2.01 × 10 19 years. The isotopes in beta-decay stable isobars that are also stable with regards to double beta decay with mass number A = 5, A = 8, 143 ≤ A ≤ 155, 160 ≤ A ≤ 162, and A ≥ 165 are theorized to undergo alpha decay.