Search results
Results from the WOW.Com Content Network
The electrical resistance of a uniform conductor is given in terms of resistivity by: [40] = where ℓ is the length of the conductor in SI units of meters, a is the cross-sectional area (for a round wire a = πr 2 if r is radius) in units of meters squared, and ρ is the resistivity in units of ohm·meters.
Even if the material's resistivity is known, calculating the resistance of something made from it may, in some cases, be much more complicated than the formula = / above. One example is spreading resistance profiling , where the material is inhomogeneous (different resistivity in different places), and the exact paths of current flow are not ...
Energy required to move a unit charge through an electric field from a reference point volt (V = J/C) L 2 M T −3 I −1: extensive, scalar Electrical resistance: R: Electric potential per unit electric current ohm (Ω = V/A) L 2 M T −3 I −2: extensive, scalar, assumes linearity Electrical resistivity: ρ e: Bulk property equivalent of ...
Charge transfer coefficient, and symmetry factor (symbols α and β, respectively) are two related parameters used in description of the kinetics of electrochemical reactions. They appear in the Butler–Volmer equation and related expressions.
Also called chordal or DC resistance This corresponds to the usual definition of resistance; the voltage divided by the current R s t a t i c = V I. {\displaystyle R_{\mathrm {static} }={V \over I}.} It is the slope of the line (chord) from the origin through the point on the curve. Static resistance determines the power dissipation in an electrical component. Points on the current–voltage ...
One of the functions of many types of multimeters is the measurement of resistance in ohms.. The ohm is defined as an electrical resistance between two points of a conductor when a constant potential difference of one volt (V), applied to these points, produces in the conductor a current of one ampere (A), the conductor not being the seat of any electromotive force.
The coulomb (symbol: C) is the unit of electric charge in the International System of Units (SI). [1] [2] It is defined to be equal to the electric charge delivered by a 1 ampere current in 1 second. It is used to define the elementary charge e. [2] [1]
where resistance in ohms and capacitance in farads yields the time constant in seconds or the cutoff frequency in hertz (Hz). The cutoff frequency when expressed as an angular frequency ( ω c = 2 π f c ) {\displaystyle (\omega _{c}{=}2\pi f_{c})} is simply the reciprocal of the time constant.